EMC 2015
DRESDEN, AUGUST 16-22

“Where Baroque meets High-Tech...”

THE PREMIER SYMPOSIUM FOR EE PROFESSIONALS SPECIALIZING IN EMC

FINAL PROGRAM

TOP RATED TECHNICAL EVENTS
Hear from industry experts regarding important topics during the numerous papers, presentations, sessions, workshops, and more.

PROFESSIONAL NETWORKING
Gather and connect with like-minded professionals, leaders, and experts at the exciting planned social events across the five days of symposium.

INTERNATIONAL EXHIBITION
Visit the exhibit floor to experience, and explore current technologies, products, and services from over 60 Global EMC solutions providers.

IEEE | EMC SOCIETY | VDE | EMC EUROPE
EMC PROBES
MIL-STD-461 AND RTCA/DO-160 TESTING

8700i Injection Probe
8705C Current Probe
F-3 Calibration Fixture

- MIL-STD-461 and RTCA/DO-160 Testing
- Designed for CS114/115/116
- Compact probe design with 2.0 inch aperture
- F-3 Fixture accommodates both probes simultaneously
- Wideband frequency response, 10 kHz to 400 MHz
- Input power rating 100W for 30 minutes
- Aerospace, Automotive, Defense, Medical Applications
Welcome to the premier event in EMC!

EMC 2015 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND EMC EUROPE

August 16-22, 2015 in Dresden, Germany

The International IEEE EMC Society and EMC Europe welcomes you to the heart of Europe in the beautiful Baroque city of Dresden, Germany. We are glad you have joined us for this unique event aimed to connect EMC experts, like you, from around the globe. The year’s Symposium features top-rated technical events, numerous professional networking opportunities, and an international exhibition.

We hope you will enjoy all that we have planned for you across the next five days of symposium!

EVENT HIGHLIGHTS

KEYNOTE SPEAKER
Tuesday, 18 Aug | 0900 - 1030
We are pleased to welcome Prof. Dr. Siegfried Fiebig, CEO of Volkswagen Sachsen GmbH.

DEDICATED AUTOMOTIVE EMC TRACK
Wednesday, 19 Aug | 0820 - 1740
Dresden is the Capital of Saxony, Germany, an area known and celebrated for automotive engineering excellence. With smart car technology on the rise, the reliance on electronic components further drive the need for identifying, addressing, and resolving potential electromagnetic interference.

EMC YOUNG PROFESSIONALS LUNCHEON
Wednesday, 19 Aug | 1200 - 1430
Meet with peers from around the globe to discuss relevant challenges and best practices. Enjoy lunch as you network with like-minded professionals and make new connections that will last a lifetime.

WOMEN IN COMPLIANCE LUNCHEON
Thursday, 20 Aug | 1200 - 1330
Connect and learn from other engineering professionals about the benefits of promoting and encouraging women in the compliance workplace.

AWARDS LUNCHEON
Friday, 21 Aug | 1200 - 1400
With over 400 papers submitted, the 2015 EMC Symposium and EMC Europe Awards Luncheon is anticipated to be a celebration of valuable contributions and the thoughtful technical minds behind them. Be sure to plan to attend this sit down luncheon and celebrate your fellow peers and colleagues.
FASTEST RECEIVER. HIGHEST DYNAMIC.
BROADEST REAL-TIME BANDWIDTH.
TDEMI X. THE REAL TURBO IN EMC.

GAUSS INSTRUMENTS
“Where Baroque meets High-Tech...”

WELCOME TO EMC 2015 IN DRESDEN
Welcome 3
Chairman’s Letter 7
Symposium at a Glance 8
General Information 9
Meet the Committee 11
Getting Around Dresden 12

NETWORKING AND SOCIAL EVENTS
Social Tours 13
Networking Opportunities 14

TECHNICAL PROGRAM
Technical Program Guide 18
Daily Technical Program 24
Personal Scheduler Link 74

TECHNICAL PROGRAM continued
Poster Sessions 75
Clayton R. Paul Global University 82
Best Symposium Paper Finalists 85
Best Student Paper Finalists 87
Technical Committees 88
Collateral Meetings 90

EXHIBITS
Exhibit Hall 94
Exhibitor List 94

ADDITIONAL INFORMATION
ANSI Workshops 96
Advertiser Index 97

Special Thanks to our Event Sponsors!

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

WWW.EMC2015.ORG
The Inspiration in EMI Shielding

Visit our Website to request Free Samples, an EMI Educational DVD, Technical Assistance, & NEW EMI Shielding Catalog & Design Guide.

www.spira-emi.com
(818) 764-8222 info@spira-emi.com
All Products Made in the USA
DEAR FRIENDS AND COLLEAGUES,

Welcome to Germany, the land of Johann Wolfgang von Goethe and Friedrich Schiller, the land of Heinrich Hertz and Albert Einstein, the land of culture and science. Welcome to Dresden, the city of freestone and silicon, the city of destruction and reconciliation, the city where Baroque meets High-Tech.

For the first time we will have a Joint IEEE International Symposium on Electromagnetic Compatibility and EMC Europe where two of the leading international EMC symposia team up for the EMC event of the year. The Symposium Organizing Committee worked hard on combining the best elements of both conferences together and you will certainly like the result. You will enjoy a full 5-day program with technical sessions from Tuesday to Thursday and workshop and tutorial sessions over the entire week. The grand opening ceremony on Tuesday morning will include a keynote presentation from Prof. Siegfried Fiebig, CEO of Volkswagen Sachsen. Of course, the technical program is accompanied by a technical exhibition from Tuesday to Thursday. Please note that we decided to move the Awards Luncheon to Friday due to the overwhelmingly large number of excellent papers we received, which were selected following a two-stage review process.

The venue of the symposium is the International Congress Center Dresden. The Congress Center is located along the Elbe River only a few minutes by foot from historical city center of Dresden. Our symposium is a perfect fit for the Congress Center ensuring short distances between sessions and the exhibit hall and thus excellent networking opportunities. The Maritim headquarters hotel is adjacent to the Congress Center and located in a meticulously renovated and heritage listed municipal warehouse. Especially if you have never been to Dresden before, you should also have a look at our exclusive tour program.

Enjoy the unique atmosphere of Volkswagen’s “Gläserne Manufaktur” where the Volkswagen Phaethon and Bentley are assembled in an open and transparent building. You’ll see this impressive venue during the Tuesday evening Welcome Reception. And don’t forget to bring your EMC 2015 beer coaster that you hopefully saved for this event. Some good German beer and other beverages are waiting for you.

Save your best suit or dress for the Symposium Gala at the Westin Bellevue Ballroom on Wednesday evening. We have an exquisite gala dinner and live music planned for your enjoyment.

I look forward to meeting you at the Joint IEEE EMC Symposium and EMC Europe 2015 in the wonderful city of Dresden in August.

Hans Georg Krauthäuser
EMC Dresden 2015 General Chair
SCHEDULE AT A GLANCE

MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY

0800 | 0900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 |

CONCURRENT SESSIONS | OPENING SESSION | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS

BROK | BREAK & EXHIBITS | BREAK & EXHIBITS | BREAK & EXHIBITS | BREAK & EXHIBITS

CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS

CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS

CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS | CONCURRENT SESSIONS

BREAK | BREAK & EXHIBITS | BREAK & EXHIBITS | BREAK & EXHIBITS | BREAK & EXHIBITS

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

BREAK | BREAK & EXHIBITS | BREAK & EXHIBITS | BREAK & EXHIBITS | BREAK & EXHIBITS

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

CONCURRENT SESSIONS | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY | GLOBAL UNIVERSITY

Thank you for attending!
REGISTRATION
Registrants will be required to wear badges to access the various sessions. Some of the programs require an additional fee such as Global University and some of the social events.

REGISTRATION HOURS
Sunday 1400 - 1700
Monday 0730 - 1700
Tuesday 0730 - 1700
Wednesday 0730 - 1700
Thursday 0730 - 1700
Friday 0730 - 1130

COURSES
The technical program is scheduled to run from 0820 - 1800, Monday through Friday. The sessions, workshops and tutorials will take place in the Konferenzraum and Seminarraum Rooms, see the schedule for specific details.

EXHIBITS
Exhibits and Table Tops are located in the Hall Level.

EXHIBIT HOURS
Tuesday | 0900 – 1730
Wednesday | 0900 – 1730
Thursday | 1000 – 1700

SPEAKER READY ROOM
Speakers and chair persons are welcome to use the Speaker Ready room to prepare for presentations, experiments, or demonstrations.

Monday through Friday | 0700 - 1700
Konferenzraum 7

PROCEEDINGS
To download the proceedings, please visit:
http://www.emc2015.emcss.org

PERSONAL SCHEDULER
To map out your attendance to the workshops, tutorials, technical sessions, and more, please visit:
http://emc.confex.com/emc/emc2015/schedule/index.cgi

CERTIFICATE OF PARTICIPATION
A Certificate of Participation may be used to officially document attendance at the Symposium. Please check in at the Registration Desk to request your personal certificate and to verify your name and affiliation. If you have any questions, please send an email to hatice.altintas@vde.com.

CHILDREN AND COMPANIONS
Children and companions are allowed to visit the Exhibit Hall and as otherwise noted in your registration. Children under the age of 18 years old should be accompanied by an adult.
Your connection to the world of EMI / EMC

Sign up for our weekly newsletter

interferencetechnology.com
MEET THE SYMPOSIUM COMMITTEE

CHAIR
Hans Georg Krauthäuser
Technische Universität Dresden

VICE CHAIR
Jan Luiken ter Haseborg
Technische Universität Hamburg-Harburg

VICE CHAIR
Ralf Vick
Otto-von-Guericke-University
Magdeburg

TREASURERS
Frank Sabath
Bundeswehr Research Institute for Protective Technologies and NBC Protection (WIS)
Volker Schanz
VDE Conference Services

SECRETARY
Sven Fisahn
Leibniz Universität Hannover

TECHNICAL PROGRAM CHAIR
Heyno Garbe
Leibniz Universität Hannover

TECHNICAL PROGRAM CO-CHAIR
Bruce Archambeault
bruce.arch@ieee.org

TECHNICAL PAPERS CO-CHAIRS
Frank Gronwald
Technische Universität Hamburg-Harburg
Jun Fan
University of Missouri-Rolla

WORKSHOPS & TUTORIALS
John Maas
IBM

Davy Pissoort
KU Leuven

DEMONSTRATION & EXPERIMENTS
Sam Connor
IBM
Stefan Dickmann
HSU Hamburg

SPECIAL SESSIONS
Colin Brench
Amphenol

SPECIAL TRACK AUTOMOTIVE
Matthias Richter
WH Zwickau
Mark Steffka
General Motors

EXHIBITS
Hatice Altintas
VDE Conference Services

SPONSOR PROGRAM
Ralf Vick
Otto-von-Guericke-University
Magdeburg

LOCAL ARRANGEMENTS,
SOCIAL EVENTS AND HOSPITALITY
Hatice Altintas
VDE Conference Services

VOLUNTEER COORDINATOR
Hatice Altintas
VDE Conference Services

REGISTRATION
Bonnie Brench
brench.ieee@yahoo.com

PUBLICATIONS
Ashleigh O’Connor
In Compliance
Christian Groß
VDE Conference Services

PUBLICITY
Janet O’Neil
ETS-Lindgren
Ariane Wahrmann
ETS-Lindgren
Frank Leferink
University of Twente
Erping Li
Singapore Institute of High Performance Computing (IHPC)

SOCIAL MEDIA
Matthias Tröscher
CST

SPECIAL ADVISOR TO IEEE EMC SOCIETY
Bruce Archambeault
bruce.arch@ieee.org

WWW.EMC2015.ORG
GETTING AROUND DRESDEN

GETTING AROUND DRESDEN

DINING ATTRACTIONS

ITALIENISCHES DÖRFCHEN
Theaterplatz 3, 01067 Dresden, Germany

GREECHISCHES RESTAURANT ACHERON
Königstraße 5A, 01097 Dresden, Germany

KASTENMEIERS GMBH & CO. KG
Tzschirnerplatz 3-5, 01067 Dresden, Germany

ESTANCIA STEAKHOUSE
Fetscherstraße 30, 01309 Dresden, Germany
SOCIAL TOURS

DRESDEN ON TOUR
Sunday, 16 August
1400 - 1600
PRICE PER PERSON: EUR 39,00
Starting in the city center, enjoy a stroll through “Großer Garten”, as well as the Transparent Factory. Drive along the riverside and into the residential district to enjoy a coffee break with a local treat.

TREASURE CHAMBER DRESDEN
Monday, 17 August
1330 - 1630
PRICE PER PERSON: EUR 39,00
Enjoy a walk through the historical heart of Dresden to admire the city’s most beautiful and important sights. Admire the Theaterplatz square and Opera House. Then tour the Royal Palace and later enjoy the many masterpieces within.

RIVER CRUISE TO PILLNITZ PALACE
Tuesday, 18 August
1400 - 1730
PRICE PER PERSON: EUR 59,00
Take a ride aboard Dresden’s classic puffing steamer, and enjoy the breathtaking riverscape views from rich green meadows to enchanting. Castles, across the Blue Wonder bridge and upon the Pillnitz Palace.

MEISSEN AND THE PORCELAIN
Wednesday, 19 August
1000 – 1630
PRICE PER PERSON: EUR 89,00
Begin with a coach ride into the cradle of Saxony, the 1000-year old city of Meissen. Have lunch in a traditional restaurant then visit the Meissen porcelain factory. Observe the beautiful vineyards and cozy historic area under preservation order.

WINERY SCHLOSS WACKERBARTH
Thursday, 20 August
1400 - 1630
PRICE PER PERSON: EUR 50,00
Ride to Radebul to find the Schloss Wackerbarth, a glittering property once court to Augustus the Strong. View the baroque gardens and castle at this fine establishment known as the first transparent vineyard. Try wine making first-hand!

COMPANION CLUB
To enjoy one or more of these tours, join fellow companions at the symposium by registering for the Companion Club. This is an excellent opportunity to meet new people and catch up with old friends!

Visit emc2015.org/companion-club for complete tour details and to register.
Networking Opportunities

WELCOME RECEPTION
TUESDAY, 18 AUGUST | 1830 – 2100
Volkswagen’s “Die Gläserne Manufaktur”
Kindly supported by the Volkswagen Sachsen GmbH

Come join us at Volkswagen’s “Die Gläserne Manufaktur” for a unique evening of food and beverage in a modern setting! The factory is located 2.5 km from the Maritim hotel, near the “Großer Garten”, and can be reached easily by tram numbers 11 and 4 in approximately 30 minutes. (A free tram ticket is included in the 5-Day technical registration.)

One ticket for the Welcome Reception is included in all 5-Day technical registrations and the Companion Program registration. All others may purchase a ticket to the Welcome Reception as an add-on to their registration.

- Adult ticket price: 60-€ (70€ after July 20)
- Junior* ticket price: 30-€ (45€ after July 20)
- Children under age 8 are free**

At “Die Gläserne Manufaktur” visitors, customers and anyone with an interest in Volkswagen can observe first hand as Volkswagen’s luxury class comes into being and enjoy top-class gastronomy and an extensive range of cultural events. Indeed, this is where car manufacturing becomes an immediate communicative event; this is where innovative technology meets cultural vitality.

* A junior is considered Ages 8-17. Tickets are inclusive.
** Children under age 8 are free, but must be accompanied by a registered adult.

GALA BANQUET
WEDNESDAY, 19 AUGUST | 1900 – 2200
The Westin Bellevue
Kindly supported by ETS-Lindgren

Please join us in one of the largest ballrooms in Dresden on Wednesday, evening for a night of entertainment, the traditional passing of the EMC Europe Symposium Banner, as well as an exciting raffle drawing for a great prize!

The gala is hosted in one of the most beautiful hotels in Dresden, due to the stunning views of Dresden’s famous baroque landmarks. The Westin is an approximate 20 minute walk from the International Congress Center and Maritim host hotel, or a short taxi ride.

One ticket for the Gala Dinner is included in all 5-Day technical registrations, EXCEPT student registrations. All others may purchase a ticket to the Gala Dinner as an add-on to their registration.

- Adult ticket price: 80-€ (90€ after July 20)
- Junior* ticket price: 60-€ (70€ after July 20)
- Children under age 8 are free**
AWARDS LUNCHEON
FRIDAY, 21 AUGUST | 1200 – 1400
TERRASSENEBENE

The Awards Luncheon will be the last formal opportunity to gather and network with families and EMC professionals from academia, industry, government, military, and retired sectors. The event will start off with a catered sit-down meal. Afterwards, the EMC Society will take time to recognize members and non-members for their contribution to the Society and for professional excellence.

One ticket for the Awards Luncheon is included in all 5-Day technical registrations. All others may purchase a ticket to the Awards Luncheon as an add-on to their registration.

- Adult ticket price: 40 € (48€ after July 20)
- Junior* ticket price: 20 € (48€ after July 20)
- Children under age 8 are free**

CHAPTER CHAIR
DINNER AND SOCIAL
MONDAY, 17 AUGUST | 1730 – 2030
SEMINARRAUM 6

On Monday evening, a social session will precede the dinner to give the Chapter Chairs the opportunity to meet with the other Chapter Chairs and their Angels. A dinner will be served following the social session. After dinner, an interactive brainstorming session will conclude the meeting. This session is intended to exchange information and new ideas for effective chapter management, as well as to discuss best practices and suggestions for future development and growth of the EMC chapters.

In addition to a great meal, each Chapter Chair or their representatives will have the opportunity to share what their chapter has been doing for the past year.

CHAPTER CHAIR LUNCH AND TRAINING
THURSDAY, 20 AUGUST | 1200 – 1400
SEMINARRAUM 1

On Thursday afternoon, the Chapter Chair Training Session will provide a forum for focused training to the Chapter Chairs. This will provide the Chapter Chairs with the opportunity to discuss their chapter issues and get group feedback as well as meet other Chapter Chairs from around the world. The Chapter Coordinator will also share important, resourceful information from IEEE headquarters and the EMC Society Board of Directors. Lunch will be included at this event.

NOTE: These are free events open to Chapter Chairs or their representatives. Please check with your Chapter Chair, as you can be the representative for your Chapter if your Chapter Chair cannot attend these events.
Networking Opportunities

EXCLUSIVE YOUNG PROFESSIONAL EVENTS

Did you receive your first professional degree (such as a Bachelor of Science) within the last 15 years? If you answered “yes”, then you are a Young Professional! Please join us at these exciting events open ONLY to Young Professionals.

BIKE TOUR OF DRESDEN
MONDAY, 17 AUGUST | 1800 – 2000

This social event includes biking around Dresden. Our friendly tour guide will point out the highlights of Dresden as well as the best pubs (and those with the best prices!) so you can return later in the symposium week to enjoy with your colleagues. Price includes bike rental, helmet and tour guide. Meet at the symposium registration area at the International Congress Center at 5:40 PM. Note you MUST BE REGISTERed IN ADVANCE to ensure equipment availability.

LUNCH AND LEARN: ADVANCE YOUR CAREER
WEDNESDAY, 19 AUGUST | 1200 – 1430
SEMINAR ROOM 2

Join us for an interactive Lunch and Learn event with speaker Martina Sabath on the important topic of “Body Language.” Participants will be quizzed to determine the meaning of certain postures. You’ll learn tips and techniques to improve your nonverbal communication skills and advance your career. You’ll also learn what others may be really telling you with their body language so you can respond accordingly and get ahead.

FOUNDERS AND PAST PRESIDENTS LUNCHEON
THURSDAY, 20 AUGUST | 1130 – 1330
LOUNGE/BLUE BAR

The Founders and Past-Presidents Luncheon will be held at the convention center. The Luncheon is by invitation only to the Founders of the EMC Society, Past-Presidents of the EMC Society, current members of the Board of Directors, and distinguished members of the European EMC Community. The luncheon is a chance for the old and the new to mix, exchanging experiences of the past, challenges of the future, and learning about the EMC profession. A sit down lunch is provided.

WOMEN IN COMPLIANCE LUNCHEON
THURSDAY, 20 AUG | 1200 – 1330
SEMINAR ROOM 2

Connect and learn from other engineering professionals about the benefits of promoting and encouraging women in the electromagnetic compliance workplace. Kirsten Russell, a guest speaker from the IEEE Women in Engineering Society, will introduce the mission and works of the WIE and facilitate thoughtful discussion about the challenges, milestones, and future outlook.
WELCOME FROM THE TECHNICAL CHAIR

On behalf of the Technical Program Committee and me, we welcome you to the 2015 Joint IEEE International Symposium on Electromagnetic Compatibility and EMC Europe in Dresden, Germany. This year we are pleased to have received more than 400 submissions from industry leaders, recognized professionals, and academia worldwide across a variety of topics and disciplines within EMC. It was a very hard job to select the most interesting papers for the symposium, but now you can see the result. Enjoy the quality lineup of thought-provoking, educational, and informational activities we have scheduled for you throughout these five days of symposium.

Heyno Garbe
Technical Program Chair

GETTING AROUND THE CONGRESS CENTER

KONFERENZRAUM LEVEL

SEMINARRAUM LEVEL

WWW.EMC2015.ORG
Technical Program

MONDAY 17 AUGUST

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Location</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FUNDAMENTALS OF EMI/EMC</td>
<td>MODELING OF EMC PROBLEMS USING CONCEPT-II</td>
<td>APPLICATION OF REVERBERATION CHAMBERS</td>
<td>DETAILS OF THE FIRST PRACTICAL METHOD FOR RISK-MANAGING EMC</td>
</tr>
<tr>
<td>1000 - 1020, MORNING BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200 - 1330, LUNCH BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0830 – 1730</td>
<td>WS1 AND WS7</td>
<td>WORKSHOP 0830 – 1730 Konferenzraum 1</td>
<td>WS8</td>
<td>WORKSHOP 1400 - 1730 Konferenzraum 2</td>
</tr>
<tr>
<td></td>
<td>FUNDAMENTALS OF EMI/EMC</td>
<td>COMPUTATIONAL ELECTROMAGNETICS AND MULTIPHYSICS METHODS FOR CHARACTERIZING COMPLEX EMI/EMI EFFECTS</td>
<td>POWER DISTRIBUTION DESIGN ON PCBS FOR EFFECTIVE EMI CONTROL</td>
<td>CALIBRATION OF EMC TEST FACILITIES AND MEASUREMENT INSTRUMENTATION</td>
</tr>
<tr>
<td>1530 - 1600, AFTERNOON BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUNDAMENTALS OF EMI/EMC</td>
<td>COMPUTATIONAL ELECTROMAGNETICS AND MULTIPHYSICS METHODS FOR CHARACTERIZING COMPLEX EMI/EMI EFFECTS</td>
<td>POWER DISTRIBUTION DESIGN ON PCBS FOR EFFECTIVE EMI CONTROL</td>
<td>CALIBRATION OF EMC TEST FACILITIES AND MEASUREMENT INSTRUMENTATION</td>
</tr>
</tbody>
</table>

TUESDAY 18 AUGUST

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Location</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRACK A 1020 – 1740 Konferenzraum 1</td>
<td>TRACK B 1020 – 1740 Konferenzraum 2</td>
<td>TRACK C 1020 – 1650 Konferenzraum 3</td>
<td>TRACK D 1020 – 1135 Konferenzraum 4</td>
</tr>
<tr>
<td></td>
<td>CIRCUITS AND DEVICES</td>
<td>LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY I</td>
<td>EMC FOR EMERGING WIRELESS TECHNOLOGIES I</td>
<td>SMART GRID EMC</td>
</tr>
<tr>
<td>1000 - 1020, MORNING BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Session</td>
<td>1020 - 1200</td>
<td>Technical Session</td>
<td>1020 - 1135</td>
</tr>
<tr>
<td></td>
<td>SHIELDING I</td>
<td>LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY II</td>
<td>EMC FOR EMERGING WIRELESS TECHNOLOGIES II</td>
<td>EM INFORMATION SECURITY AND COUNTERMEASURES</td>
</tr>
<tr>
<td>1530 - 1600, AFTERNOON BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Session</td>
<td>1600 - 1740</td>
<td>Technical Session</td>
<td>1600 - 1740</td>
</tr>
<tr>
<td></td>
<td>SHIELDING II</td>
<td>LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY III</td>
<td>EMC FOR EMERGING WIRELESS TECHNOLOGIES III</td>
<td>EM INFORMATION SECURITY AND COUNTERMEASURES</td>
</tr>
</tbody>
</table>
"Where Baroque meets High-Tech..."

MONDAY 17 AUGUST

WS1 AND WS7 | WORKSHOP

0830 – 1730
Konferenzraum 1

WS2 | WORKSHOP

0830 - 1200
Konferenzraum 2

WS3 | WORKSHOP

0830 - 1200
Konferenzraum 3

WS4 | WORKSHOP

0830 – 1200
Konferenzraum 4

WS5 | WORKSHOP

0830 – 1200
Konferenzraum 5

- **NOVEL ABSORBER APPLICATIONS**
- **NEW CHALLENGES AND TECHNIQUES IN SHIELDING AGAINST ELECTROMAGNETIC INTERFERENCE**

WS11 | TUTORIAL

1400 - 1730
Konferenzraum 5

WS12 | TUTORIAL

1400 - 1730
Konferenzraum 6

SS2 | SPECIAL SESSION

1400 - 1605
Seminarraum 1

- **FUNDAMENTALS OF EMI/EMC MODELING OF EMC PROBLEMS USING CONCEPT-II**
- **APPLICATION OF REVERBERATION CHAMBERS**
- **DETAILS OF THE FIRST PRACTICAL METHOD FOR RISK-MANAGING EMC**
- **NOVEL ABSORBER APPLICATIONS**
- **NEW CHALLENGES AND TECHNIQUES IN SHIELDING AGAINST ELECTROMAGNETIC INTERFERENCE**

1000 - 1020, MORNING BREAK

WS6 | WORKSHOP

0830 - 1200
Konferenzraum 6

WS13 | TUTORIAL

1400 - 1730
Seminarraum 1

- **COST IC 1407 “ACCREDIT” WORKSHOP: EMI CHALLENGES IN FUTURE COMPLEX MULTIFUNCTIONAL (DIGITAL) SYSTEMS**
- **SMART GRID EMC UPDATE**
- **SHIELDING MEASUREMENTS: FROM LF TO MICROWAVE**

1200 - 1330, LUNCH BREAK

WS1 AND WS7 | WORKSHOP

0830 – 1730
Konferenzraum 1

WS8 | WORKSHOP

1400 - 1730
Konferenzraum 2

WS9 | TUTORIAL

1400 - 1730
Konferenzraum 3

WS10 | TUTORIAL

1400 - 1730
Konferenzraum 4

WS11 | TUTORIAL

1400 - 1730
Konferenzraum 5

WS12 | TUTORIAL

1400 - 1730
Konferenzraum 6

SS2 | SPECIAL SESSION

1400 - 1605
Seminarraum 1

1530 - 1600, AFTERNOON BREAK

FUNDAMENTALS OF EMI/EMC COMPUTATIONAL ELECTROMAGNETICS AND MULTIPHYSICS METHODS FOR CHARACTERIZING COMPLEX EMC/EMI EFFECTS

POWER DISTRIBUTION DESIGN ON PCBS FOR EFFECTIVE EMI CONTROL

CALIBRATION OF EMC TEST FACILITIES AND MEASUREMENT INSTRUMENTATION

COST IC 1407 “ACCREDIT” WORKSHOP: EMI CHALLENGES IN FUTURE COMPLEX MULTIFUNCTIONAL (DIGITAL) SYSTEMS

SMART GRID EMC UPDATE SHIELDING MEASUREMENTS: FROM LF TO MICROWAVE

1000 - 1020, MORNING BREAK

Technical Session | TRACK A

1020 – 1740
Konferenzraum 1

Technical Session | TRACK B

1020 – 1740
Konferenzraum 2

Technical Session | TRACK C

1020 – 1650
Konferenzraum 3

Technical Session | TRACK D

1020 – 1135
Konferenzraum 4

Technical Session | TRACK E

1020 – 1715
Konferenzraum 5

WS13 | TUTORIAL

1400 - 1730
Seminarraum 1

1200 - 1400, LUNCH BREAK

Technical Session | TRACK A

1400 - 1515
Konferenzraum 1

Technical Session | TRACK B

1400 - 1540
Konferenzraum 2

Technical Session | TRACK C

1400 - 1540
Konferenzraum 3

Technical Session | TRACK D

1400 - 1540
Konferenzraum 4

Technical Session | TRACK E

1400 - 1605
Konferenzraum 5

SS1 | Special Session

1400 - 1540
Seminarraum 1

1530 - 1600, AFTERNOON BREAK

Technical Session | TRACK A

1600 - 1740
Konferenzraum 1

Technical Session | TRACK B

1600 - 1740
Konferenzraum 2

Technical Session | TRACK C

1600 - 1740
Konferenzraum 3

Technical Session | TRACK D

1600 - 1650
Konferenzraum 4

Technical Session | TRACK E

1600 - 1715
Konferenzraum 5

1600 - 1715
Seminarraum 1

SHIELDING I

LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY II

EMC FOR EMERGING WIRELESS TECHNOLOGIES II

EM INFORMATION SECURITY AND COUNTERMEASURES

EMC IN COMMUNICATION SYSTEMS

BASIC EMC MEASUREMENTS

1000 - 1020, MORNING BREAK

Technical Session | TRACK A

1020 - 1200
Konferenzraum 1

Technical Session | TRACK B

1020 - 1135
Konferenzraum 2

Technical Session | TRACK C

1020 - 1200
Konferenzraum 3

Technical Session | TRACK D

1020 - 1135
Konferenzraum 4

Technical Session | TRACK E

1020 - 1715
Konferenzraum 5

WS13 | TUTORIAL

1400 - 1730
Konferenzraum 6

1200 - 1400, LUNCH BREAK

Technical Session | TRACK A

1400 - 1515
Konferenzraum 1

Technical Session | TRACK B

1400 - 1540
Konferenzraum 2

Technical Session | TRACK C

1400 - 1540
Konferenzraum 3

Technical Session | TRACK D

1400 - 1540
Konferenzraum 4

Technical Session | TRACK E

1400 - 1605
Konferenzraum 5

1530 - 1600, AFTERNOON BREAK

Technical Session | TRACK A

1600 - 1740
Konferenzraum 1

Technical Session | TRACK B

1600 - 1740
Konferenzraum 2

Technical Session | TRACK C

1600 - 1740
Konferenzraum 3

Technical Session | TRACK D

1600 - 1650
Konferenzraum 4

Technical Session | TRACK E

1600 - 1715
Konferenzraum 5

SS1 | Special Session

1600 - 1715
Seminarraum 1

SHIELDING II

LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY III

EMC FOR EMERGING WIRELESS TECHNOLOGIES III

EM INFORMATION SECURITY AND COUNTERMEASURES

EM ENVIRONMENT

BASIC EMC MEASUREMENTS
Technical Program

WEDNESDAY 19 AUGUST

<table>
<thead>
<tr>
<th>TRACK F</th>
<th>TRACK G</th>
<th>TRACK H</th>
<th>TRACK I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>0820 – 1000</td>
<td>0820 – 1000</td>
<td>0820 – 1000</td>
<td>0820 – 1000</td>
</tr>
<tr>
<td>SYSTEM EMC PREDICTION I</td>
<td>REVERBERATION TESTING I</td>
<td>ADVANCED MODELS AND TIME DOMAIN METHODS I</td>
<td>SIGNAL AND POWER INTEGRITY I</td>
</tr>
</tbody>
</table>

1000 - 1020, MORNING BREAK

<table>
<thead>
<tr>
<th>TRACK F</th>
<th>TRACK G</th>
<th>TRACK H</th>
<th>TRACK I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020 – 1135</td>
<td>1020 – 1200</td>
<td>1020 – 1200</td>
<td>1020 – 1200</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1400 – 1540</td>
<td>1400 – 1540</td>
<td>1400 – 1515</td>
<td>1400 – 1540</td>
</tr>
<tr>
<td>FILTERS AND CONDUCTED COUPLING I</td>
<td>EMISSION MEASUREMENTS I</td>
<td>MODELING APPLICATIONS, INCLUDING REVERBERATION CHAMBERS I</td>
<td>SIGNAL AND POWER INTEGRITY II</td>
</tr>
</tbody>
</table>

1200 - 1330, LUNCH BREAK

<table>
<thead>
<tr>
<th>TRACK F</th>
<th>TRACK G</th>
<th>TRACK H</th>
<th>TRACK I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1020 – 1135</td>
<td>1020 – 1135</td>
<td>1020 – 1200</td>
<td>1020 – 1135</td>
</tr>
<tr>
<td>FIELD - WIRE COUPLING & RADIATION I</td>
<td>IMMUNITY MEASUREMENTS I</td>
<td>MODELING APPLICATIONS AND UNCERTAINTY ANALYSIS IN SIMULATIONS I</td>
<td>SIGNAL AND POWER INTEGRITY V</td>
</tr>
</tbody>
</table>

1530 - 1600, AFTERNOON BREAK

<table>
<thead>
<tr>
<th>TRACK F</th>
<th>TRACK G</th>
<th>TRACK H</th>
<th>TRACK I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1400 – 1540</td>
<td>1400 – 1515</td>
<td>1400 – 1540</td>
<td>1400 – 1540</td>
</tr>
<tr>
<td>FIELD - WIRE COUPLING & RADIATION II</td>
<td>IMMUNITY MEASUREMENTS II</td>
<td>MODELING APPLICATIONS AND UNCERTAINTY ANALYSIS IN SIMULATIONS II</td>
<td>SIGNAL AND POWER INTEGRITY VI</td>
</tr>
</tbody>
</table>

THURSDAY 20 AUGUST

<table>
<thead>
<tr>
<th>TRACK K</th>
<th>TRACK L</th>
<th>TRACK M</th>
<th>TRACK N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020 – 1740</td>
<td>1020 – 1740</td>
<td>1020 – 1740</td>
<td>0820 – 1650</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>0820 – 1000</td>
<td>0820 – 0935</td>
<td>0820 – 1000</td>
<td>0820 – 1000</td>
</tr>
<tr>
<td>FIELD - WIRE COUPLING & RADIATION I</td>
<td>IMMUNITY MEASUREMENTS I</td>
<td>MODELING APPLICATIONS AND UNCERTAINTY ANALYSIS IN SIMULATIONS I</td>
<td>SIGNAL AND POWER INTEGRITY V</td>
</tr>
</tbody>
</table>

1000 - 1020, MORNING BREAK

<table>
<thead>
<tr>
<th>TRACK K</th>
<th>TRACK L</th>
<th>TRACK M</th>
<th>TRACK N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020 – 1135</td>
<td>1020 – 1135</td>
<td>1020 – 1200</td>
<td>1020 – 1135</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1400 – 1515</td>
<td>1400 – 1540</td>
<td>1400 – 1540</td>
<td>1400 – 1540</td>
</tr>
<tr>
<td>FIELD - WIRE COUPLING & RADIATION II</td>
<td>IMMUNITY MEASUREMENTS II</td>
<td>MODELING APPLICATIONS AND UNCERTAINTY ANALYSIS IN SIMULATIONS II</td>
<td>SIGNAL AND POWER INTEGRITY VI</td>
</tr>
</tbody>
</table>

1200 - 1330, LUNCH BREAK

<table>
<thead>
<tr>
<th>TRACK K</th>
<th>TRACK L</th>
<th>TRACK M</th>
<th>TRACK N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS4</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1400 – 1540</td>
<td>1400 – 1515</td>
<td>1400 – 1540</td>
<td>1400 -1540</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Special Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1400 – 1540</td>
<td>1400 – 1515</td>
<td>1400 – 1540</td>
<td>1400 – 1540</td>
</tr>
<tr>
<td>EM FIELD INTERACTION WITH TRANSMISSION LINES</td>
<td>ANTENNAS</td>
<td>PRACTICAL APPLICATIONS OF NUMERICAL MODELING I</td>
<td>NANOTECHNOLOGY AND ADVANCED MATERIALS IN EMC I</td>
</tr>
</tbody>
</table>

1530 - 1600, AFTERNOON BREAK

<table>
<thead>
<tr>
<th>TRACK K</th>
<th>TRACK L</th>
<th>TRACK M</th>
<th>TRACK N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS4</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1650</td>
</tr>
<tr>
<td>Konferenzraum 1</td>
<td>Konferenzraum 2</td>
<td>Konferenzraum 3</td>
<td>Konferenzraum 4</td>
</tr>
<tr>
<td>Special Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
<td>Technical Session</td>
</tr>
<tr>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1740</td>
<td>1600 – 1650</td>
</tr>
<tr>
<td>EM FIELD INTERACTION WITH TRANSMISSION LINES</td>
<td>MEASUREMENT ANALYSIS</td>
<td>PRACTICAL APPLICATIONS OF NUMERICAL MODELING II</td>
<td>NANOTECHNOLOGY AND ADVANCED MATERIALS IN EMC II</td>
</tr>
</tbody>
</table>
TECHNICAL PROGRAM GUIDE

TRACK F
- **0820 – 1740**
- **Konferenzraum 1**

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>0820 – 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOTIVE TRACK</td>
<td>(\text{WS14</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>HYBRID AND ELECTRICAL VEHICLES</td>
<td>UNMANNED AIRCRAFT SYSTEMS – EMC AND APPLICATIONS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>1020 – 1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL POWERTRAIN</td>
<td>(\text{WS14</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>UNMANNED AIRCRAFT SYSTEMS – EMC AND APPLICATIONS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>1400 – 1515</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL POWER SUPPLY</td>
<td>(\text{WS15</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>EMC ISSUES RELATED TO POWER SYSTEM TECHNICAL PERFORMANCE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>1600 – 1740</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYSIS AUTOMOTIVE SYSTEMS</td>
<td>(\text{WS15</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>EMC ISSUES RELATED TO POWER SYSTEM TECHNICAL PERFORMANCE</td>
<td></td>
</tr>
</tbody>
</table>

TRACK G
- **0820 – 1715**
- **Konferenzraum 2**

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>0820 – 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOTIVE TRACK</td>
<td>(\text{WS14</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>HYBRID AND ELECTRICAL VEHICLES</td>
<td>UNMANNED AIRCRAFT SYSTEMS – EMC AND APPLICATIONS</td>
</tr>
</tbody>
</table>

TRACK H
- **0820 – 1740**
- **Konferenzraum 3**

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>0820 – 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOTIVE TRACK</td>
<td>(\text{WS14</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>HYBRID AND ELECTRICAL VEHICLES</td>
<td>UNMANNED AIRCRAFT SYSTEMS – EMC AND APPLICATIONS</td>
</tr>
</tbody>
</table>

TRACK I
- **0820 – 1740**
- **Konferenzraum 4**

TRACK O
- **1400 – 1805**
- **Konferenzraum 5**

<table>
<thead>
<tr>
<th>Technical Session</th>
<th>1400 – 1540</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS5</td>
<td>(\text{SPECIAL SESSION</td>
</tr>
<tr>
<td>(\text{Konferenzraum 5})</td>
<td>(\text{Seminarraum 1})</td>
</tr>
<tr>
<td>INTENTIONAL ELECTROMAGNETIC INTERFERENCE (IEMI) PROTECTION OF CRITICAL INFRASTRUCTURES</td>
<td>NANOTECHNOLOGY APPLIED TO EMC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Session</th>
<th>1020 – 1135</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SS3</td>
<td>Special Session</td>
</tr>
<tr>
<td>HPEM TESTING AND ANALYSIS</td>
<td>EMC DIAGNOSTICS OF COMPLEX SYSTEMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Session</th>
<th>1600 – 1805</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SS3</td>
<td>Special Session</td>
</tr>
<tr>
<td>IEMI PULSERS AND EFFECTS EVALUATIONS</td>
<td>EMC DIAGNOSTICS OF COMPLEX SYSTEMS</td>
</tr>
</tbody>
</table>
Technical Program

FRIDAY 21 AUGUST

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 0830 - 1730 | WS18 and WS23 | WORKSHOP
Konferenzraum 1 |
| 0830 - 1200 | WS19 and WS24 | TUTORIAL
Konferenzraum 2 |
| 0830 - 1200 | WS20 | TUTORIAL
Konferenzraum 3 |
| 0830 - 1000 | WS21 | TUTORIAL
Konferenzraum 4 |
| 1000 - 1020 | AUTOMOTIVE EMC | WORKING EMC ENGINEER SKILLS |
| 1200 - 1330 | AUTOMOTIVE EMC | WORKING EMC ENGINEER SKILLS |
| 1530 - 1600 | AUTOMOTIVE EMC | WORKING EMC ENGINEER SKILLS |

1000 - 1020, MORNING BREAK

<table>
<thead>
<tr>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOTIVE EMC</td>
</tr>
<tr>
<td>IEC HPEM STANDARDIZATION UPDATE</td>
</tr>
</tbody>
</table>

1200 - 1330, LUNCH BREAK

<table>
<thead>
<tr>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOTIVE EMC</td>
</tr>
<tr>
<td>IEMI EFFECTS ON CRITICAL INFRASTRUCTURES: THE EUROPEAN PROJECT STRUCTURES</td>
</tr>
</tbody>
</table>

1530 - 1600, AFTERNOON BREAK

<table>
<thead>
<tr>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOTIVE EMC</td>
</tr>
<tr>
<td>IEMI EFFECTS ON CRITICAL INFRASTRUCTURES: THE EUROPEAN PROJECT STRUCTURES</td>
</tr>
</tbody>
</table>

Photo by Richard Georgerian
<table>
<thead>
<tr>
<th>WORKSHOP</th>
<th>WORKSHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS22.1</td>
<td>WS22.2</td>
</tr>
<tr>
<td>0830 - 1000</td>
<td>1030 - 1200</td>
</tr>
<tr>
<td>Konferenzraum 6</td>
<td>Konferenzraum 5</td>
</tr>
</tbody>
</table>

Regulatory Requirements for Wireless Systems

Assessment and Approvals for Wireless Module Technology

<table>
<thead>
<tr>
<th>TUTORIAL</th>
<th>TUTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS27</td>
<td>WS29</td>
</tr>
<tr>
<td>1400 - 1730</td>
<td>1400 - 1730</td>
</tr>
<tr>
<td>Konferenzraum 5</td>
<td>Konferenzraum 6</td>
</tr>
</tbody>
</table>

EsD: Data Center EsD Occurrence Rate, EsD to Displays and Integrated EsD Pcb Ic Co-Design

Product Safety Engineering Society

<table>
<thead>
<tr>
<th>DEMOS AND EXPERIMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demos and Experiments</td>
</tr>
<tr>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>TUESDAY</td>
</tr>
<tr>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>THURSDAY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster Sessions</td>
</tr>
<tr>
<td>Terrassenebene</td>
</tr>
<tr>
<td>TUESDAY</td>
</tr>
<tr>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>THURSDAY</td>
</tr>
</tbody>
</table>

Posters will be on display Tuesday through Thursday 1020 - 1800.

<table>
<thead>
<tr>
<th>AWARDS LUNCHEON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awards Luncheon</td>
</tr>
<tr>
<td>Terrassenebene</td>
</tr>
<tr>
<td>FRIDAY</td>
</tr>
</tbody>
</table>
Technical Program

MONDAY

0830 - 1730
WS1/7 Fundamental EMI/EMC

0830 - 1200
WS2 Modeling of EMC Problems Using
CONCEPT-II
WS3 Application of Reverberation
Chambers
WS4 EMC for Functional Safety / Risk-
managing EMC
WS5 Novel Absorber Applications
WS6 New Challenges and Techniques
in Shielding Against Electromagnetic
Interference

1400 - 1730
SS2 Shielding Measurements:
From LF to Microwave
WS8 Computational Electromagnetics
and Multiphysics Methods for
Characterizing Complex EMC/EMI
Effects
WS9 Power Distribution Design on PCBs
for Effective EMI Control
WS10 Calibration of EMC Test Facilities
and Measurement Instrumentation
WS11 EMI challenges in Future Complex
Multi-functional (Digital) Systems
WS12 Smart Grid EMC Update

FUNDAMENTALS OF EMI/EMC
WS1 and WS7 | Tutorial | 0830-1730
Konferenzraum 1
SPONSORED BY ESAC

CHAIR: Arturo Mediano, University of Zaragoza, Zaragoza, Spain

This tutorial is an overview of many of the major topics that need to be considered when designing an electronic product or system without EMI/EMC problems. The tutorial will present the foundational ideas, without complex math, so you could be able to successfully design, evaluate, diagnose, and solve EMI/EMC problems. The main objective is to introduce new engineers in the fundamentals of this complex subject and to attract experienced designers to a review of the basics.

Topics included in the Tutorial include emissions (both radiated and conducted), printed circuit boards (PCB), grounding, shielding, cables, filters and testing fundamentals.

1. 0830 | Introduction
 Arturo Mediano, University of Zaragoza, Zaragoza, Spain
 Welcome and presentation. Tutorial outline.

2. 0830 - 1000 | Radiated Emissions
 Lee Hill, Silent Solutions, Amherst, NH, USA
 A concise introduction to the generation of radiated emissions from electronic products, and the consequences of how we measure them. A discussion of the four noise paths.

3. 1030 - 1115 | Conducted Emissions
 Lee Hill, Silent Solutions, Amherst, NH, USA
 A discussion of how and why we measure conducted emissions. How to visualize differential-mode and common-mode noise currents as they travel through the artificial mains network. The principles behind separation of modes and how to make a practical diagnosis of the dominant mode at a given frequency. A discussion of some common causes of excessive differential- and common-mode conducted emissions failures, as well as some typical design and filter solutions.

4. 1115 - 1200 | PCB Layout for EMI Compliance
 Bruce Archambeault, Missouri University of Science and Technology, Rolla, Missouri, USA and IBM, Research Triangle Park, North Carolina, USA
 Good layout practices can make a huge difference in the PCB EMI performance. This talk will discuss some of the most important considerations.
5. **1400 - 1445 | Grounding**
 Todd H. Hubing, Clemson University International Center for Automotive Research, Greenville, SC, USA
 Proper ground is an essential aspect of design for EMC compliance. This presentation covers fundamental ground concepts and emphasizes the importance of differentiating functional grounds from functional current returns. A ground serves as a local voltage reference, while a current return provides a path for signal and power currents to return to their source. The concepts of proper ground structures and ground conductors are defined. Design rules for current returns are developed and compared to the rules for effective ground design.

6. **1445 - 1530 | Shielding**
 Andy Marvin, York EMC Services Ltd., York, United Kingdom
 This presentation describes the basic principles of Electromagnetic screening.

7. **1600 - 1645 | Cables**
 Todd H. Hubing, Clemson University International Center for Automotive Research, Greenville, SC, USA
 Choosing the right cable for a given application is an important part of designing for EMC compliance. This presentation reviews various cable parameters such as impedance, imbalance, and attenuation that have an impact on EMC and signal integrity. It also discusses important properties of cable construction such as mechanical stiffness, chemical composition and cost. Cable shielding and connector options are reviewed, as well as methods for evaluating the effectiveness of cable and connector shields.

8. **1645 - 1730 | Filters for EMI-EMC**
 Arturo Mediano, University of Zaragoza, Zaragoza, Spain
 This topic will cover a review of the fundamentals of EMI/EMC filters including a basic classification and the review of usual topologies. Common components will be considered: capacitors, ferrites, three terminal capacitors, feed-through capacitors, and mains filters. How to evaluate a filter. How to destroy a filter. Key points for success.

MODELING OF EMC PROBLEMS USING CONCEPT-II

WS2 | Workshop | 0830 - 1200

Konferenzraum 2

CHAIR: Christian Schuster, Technische Universität Hamburg-Harburg, Hamburg, Germany

CO-CHAIR: Heinz-D. Brüns, Technische Universität Hamburg-Harburg, Hamburg, Germany

CONCEPT-II is a method of moments (MoM) solver based on a frequency domain formulation for the treatment of metallic and dielectric objects. The code is under continuous development at the Institute of Electromagnetic Theory at TUHH and free of charge for academic institutions and non-commercial applications. The workshop is intended to introduce the solver to the wider EMC community and instruct people on how to solve EMC problems using MoM. After a short overview of the code features a number of current CONCEPT-II users will report on how they apply the code to their EMC issues and what difficulties they met in doing so. A broad range of EMC topics will covered along the way including highly resonant cavities, electromagnetic field coupling, impact of direct and indirect lightning strikes, radar cross section computations, evaluation of shielding effectiveness, low frequency problems in power circuits, and antenna modeling for magnetic resonance imaging.

The workshop will be of high value for anyone looking for numerical solutions of challenging EMC problems and will encourage them to use a method of moments based tool. It will be specifically useful for EMC experts from universities and public research institutions that are interested in the application of a software tool that can handle a wide range of EMC problems – for free.

1. Modeling of EMC Problems Using CONCEPT-II – An Introduction
 H.-D. Brüns, Technische Universität Hamburg-Harburg, Institute of Electromagnetic Theory

2. Efficient Simulation of the Stochastic Electromagnetic Field Coupling into Transmission Line Structures Using the Method of Moments
 M. Magdowski, R. Vick, Otto-von-Guericke-Universität Magdeburg, Electromagnetic Compatibility Lab
3. Analysis of a Hybrid Broadband Reverberation Chamber Antenna
M. P. Robinson, I. D. Flintoft, G. Esposito, A. C. Marvin, L. Dawson, J. F. Dawson, University of York, UK

4. Simulation of Lightning Strikes to the Peissenberg Tower using the Computer Code CONCEPT II
F. Heidler, M. Manhardt, K. Stimper, Universität der Bundeswehr München

5. Radar Cross Section Analysis of Aircraft using CONCEPT-II
A. Schröder, Institute of Applied Physics, University of Bern

6. Effects of Radomes on Antenna Radiation
J. Lansink Rotgerink, J.J van Es, J. Verpoorte, National Aerospace Laboratory NLR, Avionics Technology department

7. Calculation of Shielding Effectiveness of Wires and Avionics Boxes
H. Schippers, J. Verpoorte, J. Lansink Rotgerink, National Aerospace Laboratory NLR, Avionics Technology department

8. Calibration Procedures for Radiation Model Creation Based on Near Field Measurements
D. Rinas, Zongyi Chen, S. Frei, Technische Universität Dortmund, On-Board Systems Lab

9. Stochastical EMC Simulations for the Investigation of Real Cable Layouts
D. Hamann, M.-B. Konerding, H. Garbe, Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement

10. Lightning Protection of Aircraft Systems Installed inside Composite Nose: Principal Analysis
D. Krutílek*, J. Kučera**, Z. Raida*, Zdeněk Řezníček**, *: Department of Radio Electronic, Brno University of technology, Brno, Czech Republic, **: Evektor, spol. s r.o., Kunovice, Czech Republic

C. Findeklee, Philips Research Europe-Hamburg, Tomographic Imaging Department

12. Simulation of the Radiation of Large High Voltage Applications in the Frequency Range up to 10 MHz
G. Seibert, M. Meeh, Siemens, Erlangen, Germany

APPLICATION OF REVERBERATION CHAMBERS

WS3 | Tutorial | 0830 - 1200
Konferenzraum 3

CHAIR: Vignesh Rajamani, Oklahoma State University, Stillwater, Oklahoma, USA

This tutorial will provide an introduction to recent applications of reverberation chambers. It is intended to provide EMC engineers who are interested in applying reverberation chambers to various measurement issues and the extension of reverberation chambers to solve a variety of EMC problems.

This half-day tutorial provides a brief overview of Reverb Chamber (RC) theory, followed by recent applications of RCs. The tutorial material will be updated to reflect recent research results and implications. The format will be a conference presentation style (lecture) followed by questions moderated by the chairman. It is designed for both academics and people from industry who will be involved in radiated emission or immunity testing of commercial or military systems using reverberation chambers and will be valuable to personnel evaluating the use of reverberation chambers as a complement to or replacement for other types of radiated test facilities and for personnel who are trying to use statistical methods to characterize the electromagnetic environments.

1. Introduction – Rationale for RC Testing and Overview of Reverberation Chamber Theory
Vignesh Rajamani and Chuck Bunting, Oklahoma State University (OSU), Stillwater, Oklahoma, USA

2. Multiple Antenna Stirring for Reverberation Chambers
Valter Mariani Primiani, Polytechnic University of Marche, Ancona, Italy

3. Optimizing Reverb Chamber Design for DO160 Cat G and L
Garth D’Abreu, ETS Lindgren, Cedar Park, Texas, USA

4. Measurement of Antenna Noise Temperature in a Reverberation Chamber
Andy Marvin, University of York, UK

5. Flexible Testing
Frank Leferink, University of Twente, The Netherlands

6. Use of Reverberation Chambers in Design and Verification of Highly Shielded Systems
Mats Backstrom, Technical Fellow, Electromagnetic Effects, Adj. Professor, Royal Institute of Technology (KTH), Saab Aeronautics, Sweden
DETAILS OF THE FIRST PRACTICAL
METHOD FOR RISK-MANAGING EMC

WS4| Workshop | 0830 -1200
Konferenzraum 4
SPONSORED BY TC1

CHAIR: Keith Armstrong, Cherry Clough Consultants Ltd, Brocton, Stafford, UK

Where safety risks can be increased by the effects of EMI on electronic equipment, EMC must be risk-managed for the full lifetime of the equipment/system/installation concerned, and so must take into account all reasonably foreseeable aging, wear, corrosion, faults, use and misuse. Overall risks of death from new projects are only acceptable at levels below 0.1% (1000ppm) per person per year, with most of the acceptable levels being set at or below 0.0001% (1ppm) per person per year. However, there are many possible contributors to this overall safety risk, and the proportion of the overall risk that is allocated to EMI causes is typically 1/10th of this, i.e. between a risk of death of 100ppm and 0.1ppm per person per year.

A consequence of the above is that no affordable time/cost of EMC immunity testing, at any test levels, can possibly provide the necessary design confidence required for compliance with the relevant safety risk management standards. Where the future EM environment is unknown (as it usually is), the traditional approach (e.g. as used by the military) is to use very rugged high-specification EM mitigation, designed to meet or exceed all possible environmental issues (shock, vibration, humidity, salt spray, temperature, EM disturbances, etc.). However, this ‘big grey box’ approach can be too large, heavy or costly for many modern safety critical systems, especially (for example) in road/air transportation, portable medical devices, mobile life-support equipment, etc.

This tutorial also describes a new approach, first published in August 2013, which (unlike the ‘big grey box’ approach) adds little to size, weight and cost. These two approaches can also be used to help manage non-safety risks associated with the use of electronics, including financial risks, mission-critical risks, high-reliability, etc.

1. Increasing Importance of EMC for Functional Safety
 Davy Pissoort, Assistant Professor KU Leuven – KULAB, Research Group ReMi - Reliability in Mechatronics & ICT, Oostende, Belgium
NOVEL ABSORBER APPLICATIONS

WS5 | Tutorial | 0830 -1200
Konferenzraum 5

CO-CHAIRS: Vincent Keyser, ETS-Lindgren, Cedar Park, Texas, USA; Stéphane Blanc, Groupe UTAC Ceram, Linas-Monthéry, France; Janet O’Neil, ETS-Lindgren, Cedar Park, Texas, USA

This tutorial will look at new applications and developments in the use of RF and EMC absorber. Examples of new applications beyond the traditional EMC measurements will be presented. A wide range of emerging topics will be discussed, which includes using the latest absorber techniques for retrofitting existing anechoic chambers, high power applications of absorber, absorber designs for wireless applications, and EMC absorber floor placement per the latest industry standards. It will also include a review of the nuances inherent in floor absorber placement as called out in the CISPR 16 chamber standards and the new ANSI C63.4-2014, which is scheduled to be referenced by the FCC. Presenters active in the ANSI C63 and CISPR standards committees will explain the nuances and changes and how these affect test results.

In recent years there has been an increased need for high power radiated measurements in an anechoic chamber. Since absorber works by transforming electromagnetic energy into thermal energy, there is a concern that in the presence of high fields the absorber can exceed threshold or ignition temperatures. An absorber engineer will provide insight on thermal behaviors of absorber under EM field illumination and tips on selecting the right absorber for a given application.

With the considerable advances in absorber technology over the past 20 years, users of older anechoic lined chambers are considering the possibility of replacing the existing absorber with new absorber. The goal is to increase overall chamber performance while keeping costs down in utilizing the existing chamber. However, a project of this scope must be approached cautiously to ensure predicted performance is achieved and construction costs are within budget. Tips and tools to consider for successful chamber retrofits based on experience will be provided.

The long established automotive industry has been experiencing a transition from the traditional immunity and emission measurements required for certification, to the increasing implementation of new tests commonly associated with measuring the performance of wireless devices and antennas. As the number of antennas on a vehicle continues to increase, standardized tests have been introduced to verify that vehicle operation is not affected by the on board communication. We will look at the recent trend for building a dual purpose chamber to satisfy EMC and wireless test requirements, as well as the impact on absorber design for a common use chamber.

1. The Increasing Need for Wireless Testing in the Automotive Industry – The Impact on Absorber Design and Test Antennas
 Garth D’Abreu, ETS-Lindgren, Cedar Park, Texas, USA

2. Investigating Floor Absorber Placement Implications for Testing per CISPR 16
 Drew Frana, IBM, Rochester, Minnesota, USA, Martin Wiles, ETS-Lindgren, Cedar Park, Texas, USA

3. Floor Absorber Placement Implications per the FCC’s Recently Referenced ANSI C63.4-2014 – Why the increase in absorber floor coverage?
 Donald N. Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey, USA

4. Retrofitting an Existing Chamber with New Absorber: Tips and Techniques to Ensure a Successful Project
 Stéphane Blanc, Groupe UTAC Ceram, Linas-Monthéry, France

5. Absorber Requirements Comparison for Different Procedures of Anechoic Chamber Test Site Validation, Including ETSI
 Anders Mynster, DELTA, Denmark

6. RF Absorbers for High and Medium Power Applications
 Zhong Chen, ETS-Lindgren, Cedar Park, Texas, USA
NEW CHALLENGES AND TECHNIQUES IN SHIELDING AGAINST ELECTROMAGNETIC INTERFERENCE

WS6 | Tutorial | 0830 - 1200
Konferenzraum 6

CHAIR: Jorge Victoria Ahuir, Würth Elektronik eiSos GmbH, Waldenburg, Germany

CO-CHAIRS: Bernd Deutschmann, Graz University of Technology, Austria; Peter Reiser, Visteon Electronics Germany GmbH, Karlsruhe, Germany

Shielding is not only about “gasketing” seams and calculating apertures. With the wide spread of wireless technologies through higher and lower frequencies, the continuous miniaturization of electronic devices and the development of powerful EMC measurement and simulation tools, EMC shielding is more useful and more challenging than ever. Therefore engineers need today new knowledge, skills, materials and techniques to prevent/solve their electromagnetic interferences.

This half day tutorial will provide an updated, innovative and practical overview to EMI shielding challenges, including practical demonstrations with real examples, measurements and simulations.

1. **IC Shielding with Soft Magnetics**
 Bernd Deutschmann, Teknisches Universität Graz, Austria
2. **NFC/RFID Selective Shielding**
 Jorge Victoria, Würth Elektronik eiSos GmbH, Waldenburg, Germany
3. **Shielding in Wireless Power Applications**
 Jorge Victoria, Würth Elektronik eiSos GmbH, Waldenburg, Germany
4. **New challenges and techniques in EMC Shielding**
 Peter Reiser, Visteon Electronics Germany GmbH, Karlsruhe, Germany

SHIELDING MEASUREMENTS: FROM LF TO MICROWAVE

SS2 | Special Session | 1400 - 1605
Seminaraum 1

CHAIRS: Johan Catrysse¹ and Davy Pissoort¹, (1) Technology Campus Ostend, KU Leuven, Ostende, Belgium

1400 | ID 5072
Modelling the Micro-structure of Non-uniform Conductive Nonwoven Fabrics: Determination of Sheet Resistance
Andrew Austin¹, John Dawson¹, Ian Flintoft¹, Andrew Marvin², (1) University of York, York, United Kingdom, (2) York EMC Services, York, United Kingdom

1425 | ID 5348
Towards a Stripline Setup to Characterise the Effects of Corrosion and Ageing on the Shielding Effectiveness of EMI Gaskets
Davy Pissoort¹, Tim Claeyes¹, Filip Vanhee¹, Johan Catrysse¹, Christian Brull², Bart Boesman¹, (1) Technology Campus Ostend, KU Leuven, Ostend, Belgium, (2) Schlegel Electronic Materials, Leffinge, Belgium

1450 | ID 5189
Differences Between NSA 94-106 and IEEE 299 LF Magnetic Shielding Measurements
Johan Catrysse¹, Davy Pissoort¹, Filip Vanhee¹, Salvatore Celozzi², (1)Technology Campus Ostend, KU Leuven, Ostend, Belgium, (2)Department of Astronautical, Electrical, and Energetic Engineering, Electrical Division, Sapienza University of Rome, Roma, Italy

1515 | ID 5193
Shielding Effectiveness of Anisotropic Materials: How to Measure?
Johan Catrysse¹, Davy Pissoort¹, Filip Vanhee¹, Tim Claeyes¹, Andy Degraeve², (1)Technology Campus Ostend, KU Leuven, Ostend, Belgium, (2)KULeuven, T–echnologie campus Ostende, Ostende, Belgium

1540 | ID 5518
Shielding Effectiveness Measurements of Materials and Enclosures using a Dual Vibrating Intrinsic Reverberation Chamber
Hans Schipper¹ and Frank Leferink¹,², (1)Thales Nederland B.V., Hengelo, Netherlands, (2)University of Twente, Enschede, Netherlands
COMPUTATIONAL ELECTROMAGNETICS AND MULTIPHYSICS METHODS FOR CHARACTERIZING COMPLEX EMC/EMI EFFECTS

WS8 | Workshop | 1400 - 1730
Konferenzraum 2

CO-CHAIRS: Wen-Yan Yin, Zhejiang University, Hangzhou, China; Christian Schuster, Technische Universität Hamburg-Harburg, Germany

Numerical modeling for EMC/EMI problems remains a challenging task even with nowadays computational resources and off-the-shelf software tools. This workshop hosts a series of speakers that have made recent contributions to the field of computational electromagnetics and multiphysics methods applied to problems relevant to the EMC community. The presentations will give both a review of the state of the art in the respective fields and show recent progress. Topics that will be addressed include general computational electromagnetic and multiphysics methods, numerical efficiency, numerical accuracy, handling of complex problems, validation of simulation results, proper choice of methods, and application of numerical methods to EMC/EMI problems. The workshop is intended both for researchers active in numerical modeling and practitioners from the EMC community that want to learn about novel methods.

1. **Finite-Difference Based Time-Domain Modeling for EMC/EMI Applications**
 Zhizhang Chen, Dalhousie University, Halifax, Nova Scotia, Canada

 Zhou Haijing, Institute of Applied Physics and Computational Mathematics, Beijing, China

3. **From Computational Electromagnetics to Multiphysics Methods for Characterizing High-power EMC/EMI Effects**
 Wen-Yan Yin, Zhejiang University, Hangzhou, China

4. **Solving Highly Resonant Structures Using a Fast Direct H Matrix Solver in the Method of Moments**
 Alexander Vogt, Technische Universität Hamburg-Harburg, Germany

5. **Using the Contour Integral Method for Solving Large EMC Problems on Printed Circuit Boards**
 Christian Schuster, Technische Universität Hamburg-Harburg, Germany

6. **Recent Advancements in Partial Element Equivalent Circuit (PEEC) Modeling**
 Giulio Antonini, University of L’Aquila, Italy

POWER DISTRIBUTION DESIGN ON PCBS FOR EFFECTIVE EMI CONTROL

WS9 | Tutorial | 1400 - 1730
Konferenzraum 3
SPONSORED BY EMC SOCIETY TC 10

CO-CHAIRS: Bruce Archambeault, Missouri University of Science & Technology, Archambeault EMI Enterprises, Four Oaks, NC, USA; James Drewniak, Missouri University of Science & Technology, Rolla, MO, USA

This tutorial will focus on good Power Distribution Network (PDN) design to control EMI on Printed Circuit Boards (PCBs). Topics include how to develop realistic target impedance for the PDN, pre-layout and post layout analysis, as well as a number of case studies to show the best design approaches to minimize EMI noise between the power/ground-reference planes. Decoupling capacitor placement, relative positions of the capacitors, and capacitance values will all be considered for the optimum design. Understanding the limitations of the capacitors due to connection inductance, position, and power plane depth in the PCB stack up are vital to the overall optimization of the EMI performance of the PDN.

1. **Power Integrity by Design using Physics-Based Models – Multilayer PCBs**
 James Drewniak, Missouri University of Science & Technology, Rolla, MO, USA

2. **Target Impedance and Transient Voltage Ripple Estimation**
 Jun Fan, Missouri University of Science & Technology, Rolla, MO, USA

3. **The Effect of Power Plane Depth in the PCB Stackup and Dielectric Thickness on PDN Performance**
 Sam Connor, IBM, Research Triangle Park, NC, USA

4. **PCB Effects for Power Integrity**
 Bruce Archambeault, PhD, Missouri University of Science & Technology, Archambeault EMI Enterprises, Four Oaks, NC, USA
CALIBRATION OF EMC TEST FACILITIES AND MEASUREMENT INSTRUMENTATION

WS10 | Tutorial | 1400 - 1730
Konferenzraum 4

CHAIR: Doug Kramer, ETS-Lindgren, Cedar Park, TX, USA
CO-CHAIR: Thomas Kleine-Ostmann, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

This tutorial will present detailed information about the state of the art in calibration of EMC measurement equipment and test facilities required by many current international standards. Specific requirements and nuances that can challenge even the most experienced EMC practitioner will be discussed, and methods for practical implementation for real-world application will be shared with attendees. Speakers will include experts who are actively involved in using, writing and maintaining the standards in which the requirements are established.

All new material will be presented, representing activity within the related standards committees, including CISPR, ISO, ANSI ASC C63® and IEEE. This tutorial will take a novel approach to equipment and facility calibration by delving into implementation of specific characteristics and requirements, as opposed to a general treatment of calibration.

Calibration issues related to a variety of test facilities and measurement equipment and the associated standards will be included; test sites used for antenna calibration and reference test sites, per revision being developed for CISPR 16-1-5 and future CISPR 16-1-6. Clarification will be provided about distinguishing LISNs and AMNs separately, since many engineers and technicians use these terms interchangeably. Attendees can expect to improve their understanding of both the background of the latest requirements for calibration of EMC measurement equipment and facilities and practical aspects of performing or specifying the required calibrations.

1. **Calibration of Field Probes for EMC Measurements**
 Thomas Kleine-Ostmann, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

2. **Introduction to Calibration Methods: Calibration of LISNs and Current Probes for EMC Testing**
 Doug Kramer, ETS-Lindgren, Cedar Park, TX, USA

3. **Electromagnetic Field Probe Calibrations and Antenna Efficiency Measurements Utilizing Reverberation Chambers**
 Dennis Lewis, The Boeing Company, Seattle, WA, USA

4. **Time Domain sVSWR method for EMC radiated emission test sites > 1 GHz**
 Zhong Chen, ETS-Lindgren, Cedar Park, Texas, USA

5. **An Overview of EMI Compliance Receiver Calibration**
 Mark Terrien, Keysight Technologies, Santa Rosa, CA, USA

6. **Is Traceable Calibration of EMC Pulse Generators Possible?**
 Anders Bergman, SP Technical Research Institute of Sweden, Borås, Sweden

7. **Antenna Calibration and Site Validation for Radiated Emissions Above 1GHz (CISPR 16-1-4, 16-1-5, 16-1-6)**
 Martin Wiles, ETS-Lindgren, Stevenage, England, UK

MONDAY, 17 AUGUST
COST IC 1407 “ACCREDIT” WORKSHOP: EMI CHALLENGES IN FUTURE COMPLEX MULTI-FUNCTIONAL (DIGITAL) SYSTEMS

WS11 | Tutorial | 1400 - 1730
Konferenzraum 5
SPONSORED BY COST IC 1407

CHAIR: Dave Thomas, The University of Nottingham, Nottingham, UK

The growth of Internet-enabled smart infrastructures underpinning virtually every sector of economic and social life requires complex, high performance and highly integrated miniature electronic systems. The electromagnetic interference will increase with the anticipated increase of clock speeds, frequency of operation and circuit density. Immunity levels will also decrease due to lower supply voltages and lower signal power levels. Traditionally, the potential EMI sources were assessed in the frequency domain assuming static emissions. This is not valid for multifunctional devices with many operating modes. New approaches that fully account for time dependence and uncertainty are needed.

The tutorial will present some state-of-the-art, unconventional methods and instruments in the realm of EMI prediction and assessment and will speculate on the challenges lying ahead and the feasible manners to approach them.

1. The Characterisation and Propagation of Stochastic Fields from Printed Circuit Boards
 D. Thomas, The University of Nottingham, UK

2. Multipole-Based Macro-Models for EMC and EMI System Analysis
 Bart Boesman, KU Leuven, Belgium A.T. de Hoop, I.E. Lager, Delft University of Technology, The Netherlands

3. Parametric Identification of Stochastic EMI Sources Based on Near-Field Measurements
 Y. Kuznetsov, A. Baev, and A. Gorbunova, Moscow Aviation Institute, Russia

4. Challenges in Near Field Scanning Real World Electronic Modules
 A. P. Mynster, DELTA – Danish electronics, lights and acoustics, Denmark

SMART GRID EMC UPDATE

WS12 | Tutorial | 1400 - 1730
Konferenzraum 6
SPONSORED BY SC1

CHAIR: Donald N. Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey, USA

Smart Grid EMC is so pervasive that almost all that are involved in devices and systems that are part of the Smart Grid will need to see the bigger picture of the acceptance of EMI considerations. The primary issue involves the immunity of products that are connected to the power grid. This tutorial will provide the status of several Smart Grid key organizations and activities on the need for EMC considerations, especially in the frequency range 2 kHz to 150 kHz. There continues to be a need for strong recommendations that EMC must be considered to ensure the proper operation of SG devices in the electromagnetic environment where they will be installed. The speakers are all involved in EMC aspects of the Smart Grid and are willing to answer questions on their presentations at the end of the presentations.

1. NIST Smart Grid, SG Interoperability Panel (SGIP 2.0), and the EM Interoperability Issues Working Group Activities
 Donald N. Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey, USA

2. Low Frequency EMC Challenges in the Frequency Range 2 kHz to 150 kHz
 Jan Meyer, Technische Universitaet Dresden, Institute of Electrical Power Systems and High Voltage Engineering, Dresden, Germany

3. Immunity for Power Station and Substation Environments
 William Radasky, Metatech Corporation, Goleta, CA, USA
WE ARE PLEASED TO WELCOME PROF. DR. SIEGFRIED FIEBIG, CEO OF VOLKSWAGEN SACHSEN GMBH.

Prof. Fiebig holds a doctorate in mechanical engineering and is professor of production technology and logistics at Ostfalia University of Applied Sciences in Wolfsburg. Prof. Fiebig began his career with Volkswagen in Wolfsburg in 1978. After holding a number of different positions at the Salzgitter, Emden and Wolfsburg plants, he was appointed head of the logistics planning department at Volkswagen Brand Logistics in 1989, becoming head of logistics at the Volkswagen plant in Emden in 1994, then head of production in 1996 and acting head of the Emden plant in 1997. He was next appointed to the post of technical director and management spokesperson at the Volkswagen plant in Brussels in 1998, and was named head of the Emden plant in 2003. He was placed in charge of site management and became head of Golf production at Wolfsburg in 2007, before taking up the post as plant manager and head of vehicle production in Wolfsburg in 2008.
Technical Program

DEMONSTRATIONS AND EXPERIMENTS

1000-1600
Exhibit Hall

1000 - 1200 | ID H10
Electromagnetic Interactions in Electronic Architectures: A Tutorial Case on a Mobile System
Jean-Marc Dienot, Labceem-LGP, Univ. P. Sabatier, Tarbes, France

1000 - 1200 | ID H11
Wireless Power with Magnetic Shielding
Adrián Suárez Zapata, University of Valencia, Valencia, Spain

1000 - 1200 | ID H17
Faster Hardware Troubleshooting of Intermittent and Co-Located Narrowband, Broadband, and Wireless Signals Using Real-Time FFT Spectral Analysis
Lee Hill, SILENT Solutions, Amherst, USA

1400 - 1600 | ID H8
Transfer Impedance and current
Frits Buesink, University of Twente, Enschede, The Netherlands

1400 - 1600 | ID H9
Detecting and Solving EMC Problems in Large and Complex Industrial Installations
Werner Grommes, Institute for research and testing of the German Social Accident Insurance (IFA), Sankt Augustin, Germany

1400 - 1600 | ID H2
EMC Demo Box
Marcel van Doorn, Philips Innovation Services, Eindhoven, The Netherlands

CIRCUITS AND DEVICES

10:20 – 12:00
Technical Session | 1020 - 1200
SPONSORED BY TC4
CHAIR: John G. Kraemer, Rockwell Collins, USA

1020 | ID 5130
The Investigation of Frequency Modulation in Voltage-Controlled Oscillator due to Low Frequency Interference from Supply Voltage
Le Zhang, Xiao-Peng Yu and Er-Ping Li, Zhejiang University, Hangzhou, China

1045 | ID 5212
Increased EMI Immunity in CMOS Operational Amplifiers Using an Integrated Common-Mode Cancellation Circuit
Marco Grassi1, Jean-Michel Redoute2, and Anna Richelli1, (1) University of Brescia, Brescia, Italy, (2) Monash University, Melbourne, Australia

1110 | ID 5315
On the Effectiveness of EMIRR to Qualify OpAmps
Marco Brignone, Franco Fiori, DET, Politecnico di Torino, Torino, Italy

1135 | ID 5653
Prediction of the Robustness of Integrated Circuits Against EFT/BURST
Susanne Bauer, Bernd Deutschmann, Gunter Winkler, Institute of Electronics, Graz University of Technology, Graz, Austria

Photo courtesy of Karthik Vepuri
SHIELDING I

Technical Session | 1400 - 1515
SPONSORED BY TC4

CHAIR: Frank Leferink, Netherlands1,2, (1) University of Twente, Enschede, Netherlands, (2) Thales Nederland B.V., Hengelo, Netherlands

1400 | ID 5029
Suppression of End-fired Emission for a Miniaturized-Element Frequency Selective Shielding Surface with Finite Size Using EBG
Yimin Yu1, Cheng-Nan Chiu2, Yih-Ping Chiou1, Tzong-Lin Wu1, (1) Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, (2) Department of Electrical Engineering, Da-Yeh University, Changhua, Taiwan

1425 | ID 5475
Hole Inductance in Braided Cable Shields
Harmen Schippers1, Jaco Verpoorte2, (1) Avionics Technology, National Aerospace Laboratory, Marknesse, The Netherlands, (2) Marknesse, The Netherlands

1450 | ID 5486
Effect of Gland Quality on the Screening Effectiveness of Cable-Connector Assemblies
Patrick Deschénes3, Rob Bijman1, Frank Leferink1,2, (1) Thales Nederland B.V., Hengelo, The Netherlands, (2) University of Twente, Enschede, The Netherlands

SHIELDING II

Technical Session | 1600 - 1740
SPONSORED BY TC4

CHAIR: Frank Leferink1,2, (1) University of Twente, Enschede, Netherlands, (2) Thales Nederland B.V., Hengelo, Netherlands

1600 | ID 5527
External Scattering by Rectangular Cavities with Small Apertures
Jörg Petzold, Enrico Pannicke and Sergey Tkachenko, Otto-von-Guericke University, Magdeburg, Germany

1625 | ID 5552
Per Ångskog1,2, Mats Gösta Bäckström3, Bengt Vallhagen3, (1) Dept. of Electromagnetic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden, (2) Department of Electronics, Mathematics and Natural Sciences, University of Gävle, Gävle, Sweden, (3) Saab Aeronautics, Linköping, Sweden

1650 | ID 5581
A Study on Transmission Characteristics and Shielding Effectiveness of Shielded-Flexible Flat Cable for Differential-Signaling
Yoshiki Kayano, Akita University, Akita, Japan, Hiroshi Inoue, The Open University of Japan, Akita, Japan

1715 | ID 5744
Characterization of Cable Feedthrough by Measurements in Nested Reverberation Chambers and Comparison with Simple Theory
Jan Carlsson, Kristian Karlsson, Urban Lundgren, Electronics - EMC, SP Technical Research Institute of Sweden, Borås, Sweden
LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY I
Technical Session | 1020 - 1135
SPONSORED BY TC7
CHAIR: Alexander van Deursen, Eindhoven University of Technology, David Thomas, University of Nottingham

1020 | ID 5439
Efficient Analysis and Reduction of Magnetic Near-Field-Coupling in Mixed Signal PCBs via the Reciprocity Principle
Andreas Mantzke¹, Marco Leone¹, and Thomas Fischer²,
(1) Theoretical Electrical Engineering, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany, (2) Sivantos GmbH, Erlangen, Germany

1045 | ID 5655
Effects of Single Tone RF Interferences on Chopped Operational Amplifiers
Andrea Lavarda and Bernd Deutschmann, Institute of Electronics, Graz University of Technology, Graz, Austria

1110 | ID 5823
Benefits Of Multiphase Buck Converters In Reducing EME (Electromagnetic Emissions)
Guillaume Aulagnier¹, Kamel Abouda¹, Marc Cousineau¹, Eric Rolland¹, and Thierry Meynard¹, (1) Freescale Semiconductor, Toulouse, France, (2) University of Toulouse, LAPLACE Laboratory, Toulouse, France

LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY II
Technical Session | 1400 – 1540
SPONSORED BY TC7
CHAIR: Alexander van Deursen, Eindhoven University of Technology, David Thomas, University of Nottingham

1400 | ID 5166
Filter for the Measurement of Supraharmmonics in Public Low Voltage Networks
Matthias Klatt¹, Jan Meyer¹, Robert Wolf², Peter Schegner³, and Bernhard Wittenberg³, (1) Institute of Electrical Power Systems and High Voltage Engineering, Technische Universität Dresden, Dresden, Germany, (2) Institute of Circuits and Systems, Technische Universität Dresden, Dresden, Germany, (3) Technology Innovation, Netze BW GmbH, Stuttgart, Germany

1425 | ID 5330
Transfer Characteristic of a MV/LV Transformer in the Frequency Range Between 2 kHz and 150 kHz
Stefan Schöttke, Stephan Rademacher, Jan Meyer and Peter Schegner, Institute of Electrical Power Systems and High Voltage Engineering, Technische Universität Dresden, Dresden, Germany

1450 | ID 5617
Contributing Factors in the Final Performance of a Common Mode Choke
Anne Roc’h¹, Frank Leferink²,³, (1) Electrical Engineering Faculty - Electromagnetics, Eindhoven University of Technology, Eindhoven, Netherlands (2) University of Twente, Enschede, Netherlands, (3) Thales Nederland B.V., Hengelo, Netherlands

1515 | ID 5641
Power System Series Resonance Studies by Modified Admittance Scan
Felix Kalunta, Frank Okafor, Osita Omeje, Electrical/Electronic Engineering Department, University of Lagos, Lagos, Nigeria.
LOW FREQUENCY ELECTROMAGNETIC COMPATIBILITY III

Technical Session | 1600 – 1740
SPONSORED BY TC7

CHAIR: Alexander van Deursen, Eindhoven University of Technology, David Thomas, University of Nottingham

1600 | ID 5192
EMI Modeling of Switching Circuits via Augmented Equivalents and Measured Data
Riccardo Trinchero¹, Igor Stievano¹, and Flavio Canavero², (1) DET, Politecnico di Torino, Torino, Italy, (2) Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy

1625 | ID 5283
Prediction of the Conducted Emission Generated by the Electrified Railway Traction System
Kelin Jia and David Ribbenfjard, Bombardier Transportation Sweden AB, Västerås, Sweden

1650 | ID 5666
On Harmonic Source Identification In Power Distribution Network With Multiple Non-Linear Load
Osita Omeje, Frank Okafor and Felix Kalunta, Electrical/Electronic Department, University of Lagos, Lagos, Nigeria

1715 | ID 5738
DWT Analysis of High Order Harmonics Influence over Distorted Regimes with Fast Variable Loads
Ileana-Diana Nicolae¹, Petre-Marian Nicu1,2, and Ionut-Daniel Smarandescu², (1) Computer Science and Information Technology, University of Craiova, Craiova / Dolj County, Romania; (2) Electrical Engineering, Energetics, and Aeronautics, University of Craiova, Craiova / Dolj County, Romania

EMC FOR EMERGING WIRELESS TECHNOLOGIES I

Technical Session | 1020 - 1200
SPONSORED BY SC4

CHAIR: Robert Kebel, Airbus, Germany

1020 | ID 5142
Interference Test Method for Low-Power Wireless Sensor Networks
Ramiro Serra¹, Majid Nabi¹, (1) Eindhoven University of Technology, Eindhoven, The Netherlands

1045 | ID 5277
Measurement Validation for Radio-Frequency Interference Estimation by Reciprocity Theorem
Liang Li¹, Jingnan Pan¹, Chulsoon Hwang², Gyuyeong Cho², Hark Byeong Park², Yaojiang Zhang¹, and Jun Fan¹, (1) EMC Laboratory, Missouri University of Science and Technology, Rolla, MO, USA (2) Samsung Electronics, Suwon, South Korea

1110 | ID 5516
Performance Estimation of DSSS Wireless Systems in Impulsive Interference
Sara Örn Tengstrand and Peter Stenumgaard, Robust Telecommunications, Swedish Defence Research Agency, Linköping, Sweden

1135 | ID 5553
Interference Impact on LTE from Radiated Emission Limits
Peter Stenumgaard¹, Kia Wiklundh¹, and Karina Fors¹, (1) Robust Telecommunications, Swedish Defence Research Agency, Linköping, Sweden, (2) Robust telecommunications, Swedish Defence Research Agency, Linköping, Sweden
EMC FOR EMERGING WIRELESS TECHNOLOGIES II

Technical Session | 1400 – 1540
SPONSORED BY SC4

CHAIR: Jun Fan, Missouri Institute of Science and Technology, USA

1400 | ID 5576
Using the Amplitude Variation of a Reverberation Chamber Channel to Predict the Synchronization of a Wireless Digital Communication Test System
Ray Tanuhardja¹, Luis Gonzalez², Chih-Ming Wang³, William Young⁴, Kate Remley⁵, John Ladbury⁶, (1)Telecommunication Engineering Group, University of Twente, Enschede, The Netherlands, (2)University of Colorado, Boulder, CO, USA, (3)Statistical Engineering Division, National Institute of Standards and Technology, Boulder, CO, USA, (4)Communications Technology Lab, National Institute of Standards and Technology, Boulder, CO, USA, (5) Electromagnetics Division, National Institute of Standards and Technology, Boulder, CO, USA, (6)RF Fields, National Institute of Standards and Technology, Boulder, CO

1425 | ID 5599
Impact of Different Interference Types on an LTE Communication Link using Conducted Measurements
Peter Ankarson¹, Jan Carlsson¹, Björn Bergqvist², Stefan Larsson³, and Markel Bertilsson¹, (1)Electronics - EMC, SP Technical Research Institute of Sweden, Borås, Sweden, (2)EMC, Volvo Car Corporation, Gothenburg, Sweden, (3) Hardware & Framework Verification, EMC, Volvo Group Trucks Technology, Gothenburg, Sweden

1450 | ID 5629
The Risk of Coexistence Problems Between DAB and DVB-T2 and Military Services at the 225-240 MHz Band
Kia Wiklundh¹, Karina Fors¹, and Peter Holm², (1)Robust Telecommunications, Swedish Defence Research Agency, Linköping, Sweden, (2)Swedish Defence Research Agency, Linköping, Sweden

1515 | ID 5634
Mitigation of Co-Channel Interference by Transmit Power Control
Patrik Eliardsson, Kia Wiklundh, Erik Axell and Peter Stenumgaard, Robust Telecommunications, Swedish Defence Research Agency, Linköping, Sweden

EMC FOR EMERGING WIRELESS TECHNOLOGIES III

Technical Session | 1600 – 1650
SPONSORED BY SC4

CHAIR: Jun Fan, Missouri Institute of Science and Technology

1600 | ID 5704
A Numerical Dosimetry Study of a wearable RFID Reader Antenna for Navy Personnel Localization
Tommaso Campi¹, Silvano Cruciani¹, Valerio De Santis¹, Stefano Di Francesco¹, Emidio Di Giampaolo¹, Ramona Di Pompeo¹, Mauro Feliziani¹, and Piero Tognolatti¹, (1)Dept. of Industrial and Information, Engineering and Economics, University of L’Aquila, L’Aquila, Italy, (2)Nagoya Institute of Technology, Nagoya, Japan

1625 | ID 5660
Electromagnetic Environment Mapping for the Assessment of Critical Wireless Services in ISM Bands
Patrik Eliardsson, Björn Gabrielsson, Mikael Alexandersson, Karina Fors and Peter Stenumgaard, Robust Telecommunications, Swedish Defence Research Agency, Linköping, Sweden
SMART GRID EMC

Technical Session | 1020 - 1135

SPONSORED BY SC1

CHAIR: Donald Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey USA

1020 | ID 5141
BEST SYMPOSIUM PAPER FINALIST

Impact of Rogowski Sensors on the EMC Performance of MV Power Substations

Christian Suttner¹, Stefan Tenbohlen¹, and Werner Ebbinghaus², (1) Institute of Power Transmission and High Voltage Technology, University of Stuttgart, Stuttgart, Germany, (2) ABB AG, Ratingen, Germany

1045 | ID 5242

Electromagnetic Time Reversal Applied to Fault Detection: the Issue of Losses

Gaspard Lugrin¹, Reza Razzaghi², Farhad Rachidi³, Mario Paolone³, (1) Electromagnetic Compatibility Laboratory, The Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, (2) DESL, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, (3) Electrical Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

1110 | ID 5628

Predicting Conducted Emissions of Multiple VSCs Using Dimension Reduction Technique

Preye Ivry¹, Oluwabukola Oke¹, Dave Thomas¹, and Mark Sumner¹, (1) Department of Electrical and Electronics Engineering, University of Nottingham, Nottingham, United Kingdom, (2) Electrical Systems and Optics, University of Nottingham, Nottingham, United Kingdom

EMC MANAGEMENT

Technical Session | 1020 - 1200

SPONSORED BY TC1

CHAIR: Friedrich-Wilhelm Trautnitz, Albatross Projects GmbH, Germany

1020 | ID 5118

A Novel Characterization Method for Cable Ferrites Using a TEM-Waveguide Test Setup

Moawia Al-Hamid¹, Marco Leone¹, Steffen Schulze², (1) Theoretical Electrical Engineering, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany (2) Wurth Elektronik eiSos GmbH & Co. KG, Waldenburg, Germany

1045 | ID 5235

Electromagnetic Compatibility Levels in Power Plants and Substations

Urban Metod Peterlin and Tomaz Zivic, Milan Vidmar Electric Power Research Institute, Ljubljana, Slovenia

1110 | ID 5412

Tested Once, Forever Right?

Kai Borgeest, Aschaffenburg University of Applied Science, Aschaffenburg, Germany

1135 | ID 5682

On the Need of Certification in Computational Electromagnetics based Engineering Services

Sebastian Lange¹, Frank Sabath², and Martin Schaar thumbs¹, (1) Scientific Computing, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany, (2) Electromagnetic Effects and HPEM, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany
EMC IN COMMUNICATION SYSTEMS

Technical Session | 1400 – 1515
SPONSORED BY TC3

CHAIR: Pierre Degauque, Université de Lille/IEMN, Villeneuve d’Ascq, France, and Randy J. Jost, Ball Aerospace and Technologies Inc., USA

1400 PM | ID 5742
Influence of Modern Broadband Inhouse PLC Transmission on Short-Wave Reception
S. Battermann1, and H. Garbe2, (1) University of Applied Sciences Bielefeld, Minden, Germany, (2) Leibniz Univ., Hannover, Germany

1425 | ID 4924
B. A. Witvliet1, 2, E. Van Maanen2, M. J. Bentum(1), C. H. Slump(1), and R. Schiphorst(1), (1) University of Twente, Enschede, The Netherlands, (2) Radiocommunications Agency Netherlands, Groningen, Netherlands

1450 | ID 5573
Determination of Radiated Emissions of an Electrically Large EUT: Simulation and Experiment
X. Wang and R. Vick, Otto-von-Guericke-University, Magdeburg, Germany

EM ENVIRONMENT

Technical Session | 1600 – 1715
SPONSORED BY TC3

CHAIR: Pierre Degauque, Université de Lille/IEMN, Villeneuve d’Ascq, France, and Randy J. Jost, Ball Aerospace and Technologies Inc., USA

1600 | ID 5763
Health Protection Reference Levels for Voltages and Currents in Typical Domestic Electrical Installations
L. Nuño, Polytechnic Univ. of Valencia, Valencia, Spain

1625 | ID 5579
Increasing Electromagnetic Compatibility of Contactless Inductive Flow Tomography
T. Wondrak1, M. Ratajczak1, T. Gundrum1, F. Stefani1, H. G. Krauthäuser2, and R. T. Jacobs2, (1) Magnetohydrodynamics, Helmholtz-Zentrum, Dresden, Germany, (2) Technical Univ. Dresden, Germany

1650 | ID 5644
Shielding Effectiveness of Screened Rooms with Line Feed-Throughs: A Semi-Analytical Approach
H. Karcoon1, S. Parr2, S. Dickmann1, and R. Rambousky2, (1) Helmut Schmidt Univ. / Univ. of the Federal Armed Forces, Hamburg, Germany, (2) Bundeswehr Research Institute for Protective Technologies, Munster, Germany

BEST SYMPOSIUM PAPER FINALIST

TUESDAY, 18 AUGUST

TRACK E | 0820 – 1740 | Konferenzraum 5
EM INFORMATION SECURITY AND COUNTERMEASURES

SS1 | Special Session | 1400 - 1715

CHAIRS: Yuichi Hayashi¹ and William Radasky², (1) Tohoku University, Sendai, Japan, (2) Metatech Corporation, Goleta, California, USA

1400 | ID 5261
Comparison of Electromagnetic Side-Channel Energy Available to the Attacker from Different Computer Systems
R. Callan, N. Popovic, A. Daruna, E. Pollman, A. Zajic, and M. Prvulovic, Georgia Tech, Atlanta, Georgia, USA

1425 | ID 5522
Security Simulation against Side-Channel Attack on Advanced Encryption Standard Circuit Based on Equivalent Circuit Model
K. Iokibe¹, T. Watanabe², and Y. Toyota¹, (1) Okayama University, Okayama, Japan, (2) Industrial Technology Center of Okayama Prefecture, Okayama, Japan

1450 | ID 5218
Advanced Fault Analysis Techniques on AES
K. Sakiyama, T. Machida, and A. Matsubara, The University of ElectroCommunications, Tokyo, Japan

1515 | ID 4969
Method for Estimating Fault Injection Time on Cryptographic Devices from EM Leakage
K. Nakamura, Y. Hayashi, N. Homma, T. Mizuki, and T. Aoki, Tohoku University, Sendai, Japan

1600 | ID 5211
BEST SYMPOSIUM PAPER FINALIST
Detection Method for Overclocking by Intentional Electromagnetic Interference
A. Nagao¹, Y. Okugawa¹, K. Takaya¹, Y. Hayashi², N. Homma², and T. Aoki², (1) NTT Energy and Environment Systems Laboratories, Musashino-shi, Japan, (2) Tohoku University, Sendai, Japan

1625 | ID 5769
Electromagnetic Circuit Fingerprints for Hardware Trojan Detection
J. Balasch, B. Gierlichs, and I. Verbauwhede, KU Leuven, ESAT/COSIC, Leuven, Belgium

1650 | ID 5378
Proactive and Reactive Protection Circuit Techniques Against EM Leakage and Injection
N. Miura, D. Fujimoto, and M. Nagata, Kobe University, Kobe, Japan

BASIC EMC MEASUREMENTS

WS13 | Tutorial | 1400 - 1730

Seminarraum 1

SPONSORED BY TC2

CHAIR: Donald N. Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey

This tutorial will provide information on aspects beyond the test procedure needed in performing EMC tests by competent test labs. Included will be a discussion on the application of measurement uncertainty, measurement instrumentation and its calibration, and what constitutes an acceptable test laboratory. In addition, the standards processes for both the IEEE and the International Electrotechnical Commission (IEC) will be discussed followed by a review of selected IEEE EMC Society measurement standards needing participation to complete. Where appropriate, attendees will be asked questions as to what they learned and have an opportunity for extended questioning of the speakers’ subjects at the end of the session.

1. **IEEE EMC Society and the International Electrotechnical Commission (IEC) Standardization Processes**
Donald N. Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey, USA; Alistair Duffy, De Montfort University, England

2. **Measurement instrumentation and calibration (CISPR Measuring Receiver)**
Jens Medler, Rohde & Schwarz, Munich, Germany

3. **Tips on Selecting a Test Lab**
Dan Hoolihan, Hoolihan EMC Consulting, Lindstrom, Minnesota, USA

4. **Measurement Uncertainty—CISPR 16-4-2**
Manfred Stecher, Rohde & Schwarz, retired, Munsing/Ammerland, Germany
WEDNESDAY | 0820 – 1740 | Konferenzraum 1

SYSTEM EMC PREDICTION I

Technical Session | 0820 – 1000
SPONSORED BY TC4

CHAIR: Todd H. Hubing, Clemson University International Center for Automotive Research, Greenville, SC, USA

0820 | ID 5220
Systematic Hybrid Modeling Method for Analysis of Electromagnetic Susceptibility in Electronics System
Zaw Zaw Oo1, Bui Viet Phuong1, (1) Electronics & Photonics, Institute of High Performance Computing, Singapore, Singapore

0845 | ID 5299
Investigation on the Propagation and Coupling in Aircraft using Absorbing Films
Rafael Rennd Nunes1, Jens Schüür2, (1) Institute of Flight Systems, German Aerospace Center (DLR), Braunschweig, Germany, (2) Institute for Electromagnetic Compatibility, TU Braunschweig, Braunschweig, Germany

0910 | ID 5437
Numerical and Experimental Evaluation of Electromagnetic Coupling between Radiating Antenna Structures Inside a Computer Casing
Qi Wu, Alexander Vogt Vogt, Heinz-D. Brüns, Frank Gronwald, Christian Schuster, Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg (TUHH), Hamburg, Germany

0935 | ID 5538
The Controlled Stratification Method to Estimate Extreme Quantiles in the Field of EMC Modeling
Mourad Larbi1, Philippe Besnier2, Bernard Pecqueux1, (1) Antennas and Microwave devices, Institute of Electronics and Telecommunications of Rennes, Rennes, France, (2) IETR-CNRS-Institut National des Sciences Appliquées de Rennes, Rennes, France, (3) CEA, DAM, GRAMAT, Gramat, France

0830-1200
WS14 Unmanned Aircraft Systems – EMC and Applications

1020 – 1800
Poster Sessions

1400-1730
WS15 EMC Issues Related to Power System Technical Performance
SYSTEM EMC PREDICTION II

Technical Session | 1020 – 1135
SPONSORED BY TC4

CHAIR: Todd H. Hubing, Clemson University International Center for Automotive Research, Greenville, SC, USA

1020 | ID 5543
Use of Frequency Selective Surfaces to Reduce Coupling between Antennas on Satellites
Ibrahim Türer, Space Systems Group, Turkish Aerospace Industries, Inc., Ankara, Turkey

1045 | ID 5817
Vulnerability and Coupling Behaviour of a TETRA Communication System to Electromagnetic Fields
Michael Camp¹, Juergen Schmitz¹, Markus Jung², (1) HPEM / Laser, Rheinmetall Defence, Unterlüß, Germany, (2) Rheinmetall Waffe Munition GmbH, Unterlüß, Germany

1110 | ID 5841
Application of Dipole-moment Model in EMI Estimation
Jingnan Pan¹, Liang Li¹, Xu Gao¹, Chulsoon Hwang¹, Gyuyeong Cho¹, Hark ByeongPark¹, Jun Fan¹, (1) EMC Laboratory, Missouri University of Science and Technology, Rolla, MO, (2) Samsung Electronics, Suwon, South Korea

FILTERS AND CONDUCTED COUPLING I

Technical Session | 1400 – 1540
SPONSORED BY TC4

CHAIR: Davy Pissoort, Technology Campus Ostend, KU Leuven, Ostende, Belgium

1400 | ID 4466
Cross Coupling between Lightning Conductor and Signal Lines within Rotor Blades
Matthias Hampe¹, Olaf Bernd², Michael Przybilla³, Birgit Wieland¹, (1) Department of Electrical Engineering, EMC, Ostfalia, Wolfenbüttel, Germany, (2) WaveTec Engineering, Zinnowitz, Germany, (3) Rotorcraft, DLR - Institute of Flight Systems, Braunschweig, Germany, (4) Deutsches Zentrum für Luft- und Raumfahrt, Braunschweig, Germany

1425 | ID 4567
Analysis of PIFA Antenna Coupling in Nearby Traces and Reduction with CSRRs in PCB at 2.45 GHz
Ignacio Gil, Raúl Fernández, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain

1450 | ID 4971
Median Filters to Suppress Interference
Bruno Audone, EMC Consultant, Torino, Italy and Michele Borsero, INRIM, Torino, Italy

1515 | ID 5167
Simple and Cost-Effective Method for Improving the High Frequency Performance of Surface-Mount Shunt Capacitors Filters
Joaquin Bernal Mendez¹, Fisica Aplicada III¹, Manuel Freire Rosales², and Sebastian Ramiro³, (1) University of Seville, Seville, Spain, (2)Electronica y Electromagnetismo, University of Seville, Seville, Spain, (3) Skylife Engineering, La Rinconada, Sevilla, Spain
FILTERS AND CONDUCTED COUPLING II

Technical Session | 1600 – 1740
SPONSORED BY TC4

CHAIRS: Davy Pissoort, Technology Campus Ostend, KU Leuven, Ostende, Belgium

1600 | ID 5224
Mode Conversion and Transfer Characteristics of Conducted Disturbance to Ethernet Device from Power Supply Cable
Tohlu Matsushima¹, Osami Wada¹, Kazuhiro Takaya², Yuichiro Okugawa³, (1)KyotoUniversity, Kyoto, Japan, (2)NTT Network Technology Laboratories, Musashino-shi, Japan

1625 | ID 5483
Unexpected Poor Performance of Presumed High Quality Power Line Filter
Niek Moonen¹, Frits Buesink¹, Frank Leferink¹,², (1) University of Twente, Enschede, The Netherlands, (2) Thales Nederland B.V., Hengelo, The Netherlands

1650 | ID 5556
Subminiature Common Mode Filter with Integrated ESD Protection
Tomas Hurtig, Leif Adelöw, Mose Akyuz, Mattias Elfsberg, Jens Werner¹, Jennifer Schütt², Guido Notermans², (1)Jade University of Applied Science, Wilhelmshaven, Germany, (2) NXP Semiconductors Germany GmbH, Hamburg, Germany

1715 | ID 5675
Extremity Crosstalk Protection Analysis on Twisted Cables
Charles Jullien, Jérôme Genoulaz and Michel Dunand, R&D, LABINAL POWER SYSTEMS, BLAGNAC, France

REVERBERATION TESTING I

Technical Session | 0820 – 1000
SPONSORED BY TC2

CHAIR: John Dawson, University of York, York, United Kingdom

0820 | ID 4464
An Evaluation of the Independent Stirrer Positions in the Dresden Reverberation Chambers based on Field Homogeneity within a Defined Test Volume
Stephan Pfennig, Chair of Electromagnetic Theory and Compatibility, Technical University Dresden, Dresden, Germany

0845 | ID 4992
Analysis of a Simultaneously Clockwise and Counterclockwise Rotated Mode Stirrer in a Reverberation Chamber
Michael Gruber, Thomas Dengler, Alexander Knaak, Josef Knapp and Thomas Eibert, Lehrstuhl für Hochfrequenztechnik, Technische Universität München, Munich, Germany

0910 | ID 4967
On Measurement of Reverberation Chamber time Constant and Related Curve Fitting Techniques
Xiaotian Zhang, Martin Robinson, Ian Flintoft, Department of Electronics, University of York, York, United Kingdom

0935 | ID 5326
Vectorial Channel Sounding in a Reverberation Chamber – Measuring Dynamic Behaviour
Georg Zimmer¹, Robert Geise¹, Björn Neubauer¹, Jens Schüür², Achim Enders¹,(1)Institute for Electromagnetic Compatibility, University of Braunschweig, Braunschweig, Germany, (2) Institute for Electromagnetic Compatibility, TU Braunschweig, Braunschweig, Germany
Track G | 0820 – 1740 | Konferenzraum 2

Reverberation Testing II
Technical Session | 1020 – 1200
Sponsored by TC2
Chair: Martin Robinson, University of York, York, United Kingdom

1020 | ID 5324
Quantitative Evaluation for Radio-frequency Effects of Electro-explosive Device
Juan Ye, Guilan Li and Longfei Zhao, Beijing Institute of Radio Metrology and Measurement, Beijing, China

1045 | ID 5344
Effect of Absorber Number and Positioning on the Power Delay Profile of a Reverberation Chamber
Luca Bastianelli1, Luca Giacometti2, Valter Mariani Primiani1, and Franco Moglie1, (1) Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, Italy, (2) Università Politecnica delle Marche, Ancona, Italy

1110 | ID 5618
An EMC Study on the Interoperability of the European Railway Network
Eva Karadimou and Rob Armstrong, York EMC Services, York, United Kingdom

1135 | ID 5566
Source Stirring Analysis in a Reverberation Chamber Based on Modal Expansion of the Electric Field
Emmanuel Amador, LME, EDF Lab, Moret sur Loing, France and Philippe Besnier, IETR-CNRS-Institut National des Sciences Appliquées de Rennes, Rennes, France

Emission Measurements I
Technical Session | 1400 – 1540
Sponsored by TC2
Chair: Ghery Pettit, Pettit EMC Consulting, Olympia, Washington USA

1400 | ID 5371
Erroneous Practices in Measuring Discontinuous Disturbances
Mario Monti, Elettronica Monti, Ponte a Egola, Italy

1425 | ID 5519
Extension of the Emission Measurements for Alternative Test Methods above 1 GHz for Unintentional Electromagnetic Radiators
Benjamin Menßen, David Hamann and Heyno Garbe, Institute of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, Hannover, Germany

1450 | ID 5717
Localization of Cyclostationary EMI Sources based on Near-Field Measurements
Anastasia Gorbunova, Andrey Baev, Yury Kuznetsov and Maxim Konovalyuk, Theoretical Radio Engineering Department, Moscow Aviation Institute (National Research University), Moscow, Russia

1515 | ID 5102
Radiated Transient Interferences Measurement Procedure To Evaluate Digital Communication Systems
Marc Pous1, Ferran Silva1, Marco A. Azpúrua1, (1) Universitat Politècnica de Catalunya, Barcelona, Spain; Grup de Compatibilitat Electromagnètica, Barcelona, Spain
Technical Program

EMISSION MEASUREMENTS II

Technical Session | 1600 – 1715
SPONSORED BY TC2

CHAIR: Ghery Pettit, Pettit EMC Consulting, Olympia, Washington USA

1600 | ID 5057
The Time-Domain Performance of the Van Veen Loop
James McLean¹, Robert Sutton¹, Koji Takizawa², Akihiro Sato², Masataka Midori², Yuki Naito², (¹)TDK R&D Corp., Cedar Park, TX, (²)TDK R&D Corp., Tokyo, Japan

1625 | ID 5135
Atom-Based Electric Field Measurements: An Initial Investigation of the Measurement Uncertainties
Christopher Holloway, NIST, Boulder, CO

1650 | ID 5476
Experience on Proficiency Testing in Italy
Carlo Carobbi¹, Alessio Bonci¹, Marco Cati², Carlo Panconi³, Michele Bosero⁴, Giuseppe Vizio⁴, (¹)Department of Information Engineering, Universita’ degli Studi di Firenze, Firenze, Italy, (²)Powersoft S.p.A., Firenze, Italy, (³)Elettroingegneria, Pistoia, Italy, (⁴)INRIM, Torino, Italy

ADVANCED MODELS AND TIME DOMAIN METHODS I

Technical Session | 0820 – 1000
SPONSORED BY TC9

CHAIR: Frank Gronwald, Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg (TUHH), Hamburg, Germany

0820 | ID 5059
A Heuristic Model for the Transmission Cross Section of Wire-mesh Covered Apertures
Ronny Gunnarsson, Saab Aeronautics, Linköping, Sweden and Mats Gösta Bäckström, Dept. of Electromagnetic Engineering, Royal Institute of Technology, Stockholm, Sweden

0845 | ID 4576
Validation of a Flexible Causality Treatment for Transient Analysis of Nonlinearly Loaded Structures
Cheng Yang¹,², Heinz-D. Brüns², Peiguo Liu³, and Christian Schuster³, (¹)Department of Electronic Science and Technology, National University of Defense Technology, Changsha, China, (²)Institut für Theoretische Elektrotechnik, Technische Universität Hamburg, Hamburg, Germany, (³)Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg (TUHH), Hamburg, Germany

0910 | ID 5369
Capacity Extraction in Physical Equivalent Networks
Jan Hansen, AE/EMC³, Robert Bosch GmbH, Reutlingen, Germany and Carsten Potratz, CR/ARE¹, Robert Bosch GmbH, Renningen, Germany

0935 | ID 5565
Parametric Interpolation using Physics-based Basis Functions
Alessandro Matteo Francavilla¹, Giorgio Giordanengo¹, Marco Righero¹, Giuseppe Vecchi², and Francesca Vipiana³, (¹)Antenna and EMC Lab, Istituto Superiore Mario Boella, Torino, Italy, (²)Antenna and EMC Lab, Politecnico di Torino, Torino, Italy
ADVANCED MODELS AND TIME DOMAIN METHODS II
Technical Session | 1020 – 1200
SPONSORED BY TC9

CHAIR: Frank Gronwald, Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg (TUHH), Hamburg, Germany

1020 | ID 5396
FDTD Transient Analysis of Grounding Grids. A Comparison of Two Different Thin Wire Models
Luis G. Diaz1, Céline Miry1, Christophe Guiffaut1, Alain Reineix2, and Akiyoshi Tatematsu3, (1)LME, EDF R&D, Moret sur Loing, France, (2)XLIM Laboratory, Limoges, France, (3)Electric Power Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Yokosuka, Japan

1045 | ID 5458
A Stable Subgridding Finite Difference Time Domain Method on Multi-GPU Cluster
Jan Ritter1, Magnus Benjes1, Martin Murso1, Daniela Wulf1, and Sebastian Lange2, (1)Airbus Defence and Space GmbH, Bremen, Germany, (2)Scientific Computing, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany

1110 | ID 5710
Reduced-Order Models of VFETD/FDTD Algorithms for Optimized Nanomaterial EMC Applications Method
Nikolaos Kantartzis1, Theodoros Zygiridis1, Christos Antonopoulos1, and Theodoros Tsiboukis1, (1)Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece, (2)Informatics and Telecommunications Engineering, University of Western Macedonia, Kozani, Greece

MODELING APPLICATIONS, INCLUDING REVERBERATION CHAMBERS I
Technical Session | 1400 – 1515
SPONSORED BY TC9

CHAIR: Vignesh Rajamani, Oklahoma State University, Stillwater, OK, USA

1400 | ID 4979
Efficient Full-Wave Modeling of Radiative Near-Field Interactions in Semi-Anechoic Conditions
Gert-Jan Stockman, Department of Information Technology, Ghent University, Ghent, Belgium and Dries Vande Ginste, Department of Information Technology, Ghent University, Gent, Belgium

1425 | ID 5106
Fast and Efficient Near-field to Near-field and Near-field to Far-field Transformation based on the Spherical Wave Expansion

1450 | ID 5307
Finite Element Simulation of the Frequency Dependent Polarization of Biological Cells
Sebastian Böhmelt1, Fabian Scharf1, Michael Dudzinski1, Marco Rozgic1, Lars-Ole Fichte1, and Marcus Stiemer2, (1)Helmut Schmidt University, Hamburg, Germany, (2)Chair for Theory of Electrical Engineering, Helmut Schmidt University, Hamburg, Germany

1135 | ID 5510
Method for Determining Region Boundaries for Transient Data Comparison using FSV
Gang Zhang1, Alistair Duffy2, Lixin Wang1, Xiyuan Peng1, and Bai Jinjun1, (1)Harbin Institute of Technology, Harbin, China, (2)De Montfort University, Leicester, United Kingdom
MODELING APPLICATIONS, INCLUDING REVERBERATION CHAMBERS II

Technical Session | 1600 – 1740
SPONSORED BY TC9
CHAIR: Vignesh Rajamani, Oklahoma State University, Stillwater, OK, USA

1600 | ID 5317
Experimental Validation of the Statistical Energy Analysis for Coupled Reverberant Rooms
Louis Kovalevsky1, Robin S. Langley1, Philippe Besnier2, and Jerome Soi3,(1)University of Cambridge, Cambridge, United Kingdom, (2)IETR-CNRS-Institut National des Sciences Appliquées de Rennes, Rennes, France, (3)IETR-Institut National des Sciences Appliquées de Rennes, Rennes, France

1625 | ID 5764
Simulation Based Analysis of Field Correlation and Ergodicity of a Reverberation Chamber
David Sanchez1, Michael Dudzinski2, Marco Rozgic3, Sebastian Böhmelt2, Lars-Ole Fichte4, Marcus Steimer5, Julia Schaffner6, and Julia Schaffner7, (1)Helmut Schmidt University of the Federal Armed Forces Hamburg, Hamburg, Germany, (2)Helmut Schmidt University, Hamburg, Germany, (3)Department of the Theory of Electrical Engineering, Helmut Schmidt University of the Federal Armed Forces Hamburg, Hamburg, Germany, (4)Chair for Theory of Electrical Engineering, Helmut Schmidt University, Hamburg, Germany, (5)Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

1650 | ID 5703
Uncorrelated Frequency Steps in a Reverberation Chamber: a Multivariate Approach
Gabriele Gradoni1, Luca Bastianelli2, Valter Mariani Primiani3, and Franco Moglie4, (1)School of Mathematical Sciences, The University of Nottingham, Nottingham, United Kingdom, (2)Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy

1715 | ID 5197
A Cavity Green's Function Boundary Element Method for the Modeling of Reverberation Chambers: Validation against Measurements
Michael Gruber and Thomas Eibert, Lehrstuhl für Hochfrequenztechnik, Technische Universität München, Munich, Germany

SIGNAL AND POWER INTEGRITY I

Technical Session | 0820 – 1000
SPONSORED BY TC10
CHAIR: Giulio Antonini, UAq EMC Laboratory, University of L’Aquila

0820 | ID 4841
Through Silicon Via Time Domain Crosstalk Modeling Considering Hysteretic Coupling Capacitance
Antonio Orlandi1, Francesco de Paulis1, Stefano Piersanti1, Dong-Hyun Kim2, Jonghyun Cho3, and Joungho Kim4, (1)Industrial and Information Engineering and Economics, University of L’Aquila, L’Aquila, Italy, (2)KAIST, Daejeon, South Korea, (3)KAIST Teralab., Daejeon, South Korea, (4)Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

0845 | ID 4943
Modelling of Planar EBG Structure by Using Equivalent Circuit Method
Guang-xiao Luo1, Er-ping Li2, Xing-chang Wei3, and Cui Xiang4, (1)North China Electric Power University, Beijing, China, (2)Zhejiang University, Hangzhou, China

0910 | ID 5753
Afef Bouchaala1,2, Lionel Courau1, Philippe Galy1, Olivier Bonnau12, (1)STMicroelectronics, Crolles, France, (2)IETR UMR 6164, University of Rennes1, Rennes, France

0935 | ID 5295
Merc`e Grau Novellas1, Ramiro Serra1, Matthias Rose2 (1)Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, The Netherlands, (2)NXP Semiconductors, High Tech Campus 46, Eindhoven, The Netherlands
“Where Baroque meets High-Tech…”

SIGNAL AND POWER INTEGRITY II
Technical Session | 1020 – 1200
SPONSORED BY TC10
CHAIR: Giulio Antonini, UAq EMC Laboratory, University of L’Aquila

1020 | ID 5445 BEST SYMPOSIUM PAPER FINALIST
Conformal Equivalent Circuit Model and Leapfrog Alternating Direction Implicit Formulation for Fast Simulation of Power Delivery Network
Tadatoshi Sekine1, and Hideki Asai1, (1) Mechanical Engineering, Shizuoka University, Hamamatsu-shi, Japan, (2) Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Hamamatsu-shi, Japan

1045 | ID 5587
Effective Current Distribution Analysis Method for Multiple-Transmission-Line (MTL) System with Arbitrary Conductor Number Variation
Chi-Hsuan Cheng, and Tzong-Lin Wu, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan

1110 | ID 5370 BEST SYMPOSIUM PAPER FINALIST
Broadband Equivalent-Circuit Model for Non-Uniform Transmission Lines
Andreas Mantzke, Sebastian Südekum, Marco Leone, Otto-von-Guericke University, Magdeburg, Germany

1135 | ID 5229
A Novel Semi-Analytical Solution of Impedance of Grid-Type Power Distribution Network
Han-Qin Ye, Xing-Chang Wei and Er-Ping Li, Zhejiang University, Hangzhou, China

SIGNAL AND POWER INTEGRITY III
Technical Session | 1400 – 1540
SPONSORED BY TC10
CHAIR: Christian Schuster, Technische Universität Hamburg-Harburg (TUHH), Hamburg, Germany

1425 | ID 5042
Generic Prediction of Crosstalk Between Shielded Wires
Jesper Lansink Rotgerink, J.H.G.J., and Harmen Schippers, Avionics Technology, National Aerospace Laboratory, Marknesse, Netherlands

1450 | ID 5071
Mitigating the Threat of Crosstalk and Unwanted Radiation when using Electromagnetic Bandgap Structures to Suppress Common Mode Signal Propagation in PCB Differential Interconnects
Christopher Kodama1, Christopher O’Daniel1, Joshua Cook1, Francesco de Paulis2, Michael Cracraft3, Samuel Connor3, Antonio Orlandi2, and Edward Wheeler1, (1)Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, (2)Industrial and Information Engineering and Economics, University of L’Aquila, L’Aquila, Italy, (3)Systems Group, IBM Corporation, Poughkeepsie, NY, (4)Systems Group, IBM Corporation, RTP, NC

1515 | ID 5621
Coupling Study in Smart Power Mixed ICs with a Dedicated On-Chip Sensor
Veljko Tomasevic1, Sonia Ben Dhia1, Alexandre Boyer1, Alexander Steinmaier2, Bernhard Weiss2, Ehrenfried Seebacher2, and Peter Rust2, (1)ESE, CNRS LAAS, Toulouse, France, (2)ams AG., Oberpremstätten, Austria

WWW.EMC2015.ORG 49
SIGNAL AND POWER INTEGRITY IV

Technical Session | 1600 – 1715
SPONSORED BY TC10

CHAIR: Christian Schuster, Technische Universität Hamburg-Harburg (TUHH), Hamburg, Germany

1600 | ID 4536

Measurement of High-Frequency Conductivity Affected by Conductor Surface Roughness Using Dielectric Rod Resonator Method
Toshiki Iwai, Diasuke Mizutani and Motoaki Tani, FUJITSU LABORATORIES LTD., Atsugi, Japan

1625 | ID 5595

A Study of Intensify the Power of Verification for Memory Worst Case Conditions through the SI Analysis
Chang-Ik Lee, Hyundai Mobis, Gyeonggi-Do, South Korea

1650 | ID 5761

Cost Competitive PI-SI Co-design for DDR Interfaces
Kinger Cai and Steven Ji, Intel Corporation, Santa Clara, CA

HYBRID AND ELECTRICAL VEHICLES

Technical Session | 0820 – 1000

CHAIR: Matthias Richter, Westsächsische Hochschule Zwickau, Germany

0820 | ID 4978

A Characterization of EM Coupling in a Fully Electric 4-wheel Drive Vehicle
I. Echeverria, M. Iglesias, F. Arteche, F. J. Piedrafita, Á. Pradas, ITAINNOVA, Zaragoza, Spain, F. J. Arcega, Universidad de Zaragoza, Zaragoza, Spain, J. de Smet, FLANDERS' DRIVE, Lommel, Belgium

0845 | ID 5610

The Effect of Fully Electric Vehicles on the Low Frequency Electromagnetic Environment
R. Armstrong, York EMC Services Heslington,York, United Kingdom, Dr. L. Dawson, University of York, York, United Kingdom, A. Rowell, York EMC Services Heslington,York, United Kingdom, A. Ruddle, MIRA Limited, Nuneaton, United Kingdom, C. A. Marshman, York EMC Services, York, United Kingdom

0910 | ID 5616

Testing of High Voltage Systems installed in Hybrid and Electric Vehicles
U. Reinhardt¹, J. Mooser¹, T. Artz, Mooser¹ (1) EMC Technik GmbH, Ludwigsburg, Germany

0935 | ID 5643

Automotive Industry’s EMC Requirements for Voltage Ripple in the High Voltage System of Electrical Vehicles
B. Willmann, T. Rinkleff, M. Obholz, VOLKSWAGEN AG, Wolfsburg, Germany, R. Vick, Otto-von-Guericke-University, Magdeburg, Germany
ELECTRICAL POWERTRAIN

Technical Session | 1020 – 1200
CHAIR: Matthias Richter, Westsächsische Hochschule Zwickau, Germany

1020 | ID 5173
Transient Simulation of the Low-Frequency and High-Frequency Behavior of Asynchronous Machines in SPICE
M. Krüger, M. Magdowski, R. Vick, T. Schallschmidt, Otto-von-Guericke-University, Magdeburg, Germany, T. Rinkleff, Volkswagen AG, Wolfsburg, Germany

1045 | ID 5182
Understanding Conducted Emissions from an Automotive Inverter Using Common-Mode Model
P. Hillenbrand, University of Stuttgart, Stuttgart, Germany, C. Keller, Robert Bosch GmbH, Stuttgart, Germany, S. Tenbohlen, University of Stuttgart, Stuttgart, Germany, K. Spanos, Robert Bosch GmbH, Stuttgart, Germany

1110 | ID 5205
Inverter Modeling Including Non-ideal IGBT Characteristics in Hybrid Electric Vehicle for Accurate EMI Noise Prediction
H. Shim, H. Kim, Y. Kwack, M. Moon, H. Lee, J. Song, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, B. Kim, E. Kim, Hyundai Kia Motors, Hwaseong, South Korea, J. Kim, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

1135 | ID 5320
Investigations on the Shaft Currents of an Electric Vehicle Traction System in Dynamic Operation
S. Jeschke, H. Hirsch, S. Tsiapenko, University Duisburg-Essen, Duisburg, Germany

ELECTRICAL POWER SUPPLY

Technical Session | 1400 – 1540
CHAIR: M. P. Klingler, PSA Peugeot Citroën, Vélizy-Villacoublay, France

1400 | ID 5451
Feasibility of Estimating In-service Vehicle Occupant Exposure to Electrical Powertrain Magnetic Fields using Non-local Magnetic Field Measurements
A. Ruddle, MIRA Limited, Nuneaton, United Kingdom

1425 | ID 5466
Latest Development of the National and International EMC Standards for Electrical Vehicles and Their Charging Infrastructure
M. Maarleveld, J. Bärenfänger, EMC Test NRW GmbH, Dortmund, Germany, H. Hirsch, S. Jeschke, L. Wei, M. Trautmann, University of Duisburg-Essen Duisburg, Germany, J. Heyen, A. Darrat, Volkswagen AG, Wolfsburg, Germany

1450 | ID 5485
High Frequency Impedance of Li-ion Batteries
S. Schoerle, Daimler AG, Böblingen, Germany, E. Hoene, Fraunhofer IZM Berlin, Germany, C. Spieker, University Kassel, Kassel, Germany, T. Doersam, Daimler AG, Böblingen, Germany, T. Waldmann, University Kassel, Kassel, Germany, K.-D. Lang, Fraunhofer IZM, Berlin, Germany

1515 | ID 5678
Optimum Coil Configuration of Wireless Power Transfer System in Presence of Shields
S. Cruciani, T. Campi, University of L’Aquila, L’Aquila, Italy, F. Maradei, Sapienza University, ROME, Italy, M. Feliziani, University of L’Aquila L’Aquila, Italy
Technical Program

AUTOMOTIVE | 0820 – 1740 | Konferenzraum 5

ANALYSIS AUTOMOTIVE SYSTEMS

Technical Session | 1600 – 1740

CHAIR: Ariel Lecca, PSA Peugeot-Citroën, Vélizy-Villacoublay, France

1600 | ID 5187

Influence of Car Body Materials on the Common-Mode Current and Radiated Emissions Induced by Automotive Shielded Cables

M. Vincent, M. P. Klingler, PSA Peugeot Citroën, Vélizy-Villacoublay, France, Z. Riah, Technopôle du Madrillet Avenue Galilée, Saint-Etienne du Rouvray, France, Y. Azzouz, IRSEEM/ESIGELEC, Saint-Etienne du Rouvray, France

1625 | ID 5200

Device for Adjusting Electromagnetic Losses Inside a Reverberation Chamber - Application to Automotive Wireless Environment Simulations

A. B. Hadj Mabrouk, M. P. Klingler, PSA Peugeot Citroën, Vélizy-Villacoublay, France, H. Boulzazen, IRSEEM/ESIGELEC, Saint-Etienne du Rouvray, France, M. Heddebaut, IFSTTAR, Villeneuve d’Ascq, France

1650 | ID 5298

Analysis of the Direct Radiation of EC Motors up to 10 MHz

U. Neibig, Robert Bosch GmbH, Stuttgart, Germany

1715 | ID 5834

BEST STUDENT PAPER FINALIST

Immunity of Modulation Schemes in Automotive Low Bitrate Power Line Communication Systems

A. Zeichner, S. Frei, S. A. Hassanpour Razavi, TU Dortmund, Dortmund, Germany

UNMANNED AIRCRAFT SYSTEMS – EMC AND APPLICATIONS

WS14 | Tutorial | 0830 - 1200

Seminarraum 1

SPONSORED BY SC6

CO-CHAIRS: Frank Sabath, Bundeswehr Research Institute for Protective Technologies and NBC-Protection, Munster, Germany; Thorsten Schrader, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

This workshop will discuss challenges which are associated with application of unmanned aircraft systems (UAS) in hazardous environment, including EMC aspects, hardening to high-power electromagnetic fields and flight management systems.

UAS are one of the most advancing platforms used for many applications in EMC, industrial inspection, scientific research and measurements, and disaster control and emergency management. With the advent of these systems secure operation of single or multiple flying systems may become an issue. Novel flight management systems, personal safety, EMC requirements and applications will be discussed.

1. **WERAN - Interaction of Windturbines with Terrestrial Navigation Systems and Radar**

Thorsten Schrader, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany, Jochen Bredemeyer, Flight Calibration Services FCS GmbH, Braunschweig, Germany, Christoph Stupperich, steep GmbH, Bonn, Germany, and Heyno Garbe, Leibniz Universität Hannover, Hannover, Germany

2. **UAV-Based Measurement Platform for Precision Electromagnetic Field Measurements**

Thorsten Schrader, Marius Mihalachi, Jan Rohde, Thomas Kleine-Ostmann, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

3. **Security and Averting of Danger from and for UAVs – Necessity of Robust Flight Management Systems and Sensors**

Christian Kaiser, COPTING GmbH, Braunschweig, Germany

4. **Security Detection and Tracking of Micro Aerial Vehicles (MAVs)**

Michael Caris, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Wachtberg, Germany

5. **Define and Test Electromagnetic Immunity of UAS for First Responders**

Christian Adami, Sebastian Chmel, Michael Jöster, Thorsten Pusch, and Michael Suhre, Fraunhofer Institute for Technological Trend Analysis (INT), Euskirchen, Germany

6. **A Brief Introduction on the Susceptibility of UAS Against HPEM Threats**

Stefan Potthast, Bundeswehr Research Institute for Protective Technologies and NBC-Protection (WIS), Munster, Germany
DEMONTAONS AND EXPERIMENTS

1000 - 1600
Exhibit Hall

1000 - 1200 | ID S3
EMC studies in Aeronautical Domain / Lightning Strike and Antenna Coupling Scenarios
Eddy Jehamy, Markus Schick, FEKO – Altair Engineering GmbH, Böblingen, Germany

1000 - 1200 | ID H3
Spectra of Digital Waveforms- Effects of the Rise/Fall Time, Duty Cycle, and Amplitude on the Frequency Content of Signals
Bogdan Adamczyk, Grand Valley State University, Grand Rapids, USA

1000 - 1200 | ID S2
Efficient Emission Analysis by Coupling 3D Full Wave Solvers with Circuit Simulation
Andreas Barchanski, CST-Computer Simulation Technology AG, Darmstadt, Germany

1400 - 1600 | ID H12
Radiated Emissions of Cables through Shielded Enclosure Seams and Effect of Time Rise/Fall on Clock Signals
Adrián Suárez Zapata, University of Valencia, Valencia, Spain

1400 - 1600 | ID H18
Measuring and Displaying the Surprising Impact of DC Bias on Impedance of EMI Suppression Ferrites
Lee Hill, SILENT Solutions, Amherst, USA

1400 - 1600 | ID H6
Time Domain Site VSWR Measurements
Zhong Chen, ETS-Lindgren, Cedar Park, USA

EMC ISSUES RELATED TO POWER SYSTEM TECHNICAL PERFORMANCE

WS15 | Tutorial | 1400 - 1730
Seminarraum 1
SPONSORED BY TC7

CHAIR: Dave Thomas, The University of Nottingham, Nottingham, United Kingdom

The increasing use of Internet enabled equipment and high performance power converters in power networks is making EMC in the power system environment more critical. It is also becoming important that engineers are aware of all the activities going on in the world associated with EMC to avoid conflict or gridlock in the development of new infrastructures. CIGRE has had a long tradition of working in the area of EMC in power systems and this workshop is aimed at informing the EMC community on the strength and breadth of this work to forge new liaisons and collaborations for the future.

1. Introduction to CIGRE
William Radasky, Metatech Corporation, Goleta, CA, USA

2. WG C4.32 Understanding of the Geomagnetic Storm Environment for High Voltage Power Grids
William Radasky, Metatech Corporation, Goleta, CA, USA

3. WG C4.30 EMC in Wind Energy Systems
WH Siew, University of Strathclyde, Glasgow, UK

4. CIGRE WG C4.31 EMC between Communication Circuits and Power Systems
Dave Thomas, University of Nottingham, Nottingham, UK
THURSDAY

0820-1200
Track K
0820 - 1000 Field - Wire Coupling and Radiation I
1020 - 1200 Field - Wire Coupling and Radiation II
Track L
0820 - 0935 Immunity Measurements I
1000 - 1135 Immunity Measurements II
1400 - 1515 Antennas
1600 - 1740 Measurement Analysis
Track M
0820 - 1000 Modelling Applications and Uncertainty Analysis in Simulations I
1020 - 1200 Modelling Applications and Uncertainty Analysis in Simulations II
1400 - 1540 Practical Applications of Numerical Modelling I
1600 - 1740 Practical Applications of Numerical Modelling II
Track N
0820 - 1000 Signal and Power Integrity V
1020 - 1135 Signal and Power Integrity VI
1400 - 1540 Nanotechnology and Advanced Materials in EMC I
1600 - 1650 Nanotechnology and Advanced Materials in EMC II
SS5 Intentional Electromagnetic Interference IEMI Protection of Critical Infrastructures

0830-1200
WS16 Nanotechnology Applied to EMC

1020 – 1800
Poster Sessions

1400 - 1650
SS3 EMC Diagnostics of Complex Systems Room

1400 - 1740
SS4 EM Field Interaction with Transmission Lines

1400 - 1805
Track O
1400 - 1540 HPEM Testing and Analysis
1600 - 1805 IEMI Pulser and Effects Evaluations

FIELD - WIRE COUPLING & RADIATION I

Technical Session | 0820 – 1000
SPONSORED BY TC4

CHAIR: Franco Fiori, Electronics, Politecnico di Torino, Torino, Italy

0820 | ID 4987
Susceptibility to EMI of a Battery Management System IC for Electric Vehicles
Orazio Aiello¹, Franco Fiori², Paolo Crovetti², (1) NXP Semiconductor - Automotive Business Unit, Nijmegen, Netherlands, (2) Electronics, Politecnico di Torino, Torino, Italy

0845 | ID 4955
Influence of Parasitic Elements on Radiated Emissions of a Boost Converter
Lars Middelstaedt¹, Andreas Lindemann¹, Moawia Al-Hamid³, Ralf Vick³, (1) Chair for Power Electronics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany, (2) Chair for Electromagnetic Compatibility, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

0910 | ID 5345
Equivalent Circuit Model of Frequency-Domain Responses With External Field
Bing Li, Junjun Wang, Xinwei Song and Donglin Su, Institute of EMC Technology, Beihang University, Beijing, China

0935 | ID 5490
Experimental Plane Wave and Random Field Coupling to Uniform and Nonuniform Transmission Lines
Robert Vogt-Ardatjew¹, Frank Leferink¹, ², (1) University of Twente, Enschede, Netherlands, (2) Thales Nederland B.V., Hengelo, Netherlands, Thales Nederland B.V., Hengelo, Netherlands
FIELD - WIRE COUPLING & RADIATION II

Technical Session | 1020 – 1135

SPONSORED BY TC4

CHAIR: Franco Fiori, Electronics, Politecnico di Torino, Torino, Italy

1020 | ID 5493
Study on the Reduction of Heatsink Radiation by Combining Grounding Pins and Absorbing Materials
Yoeri Arien1, Paul Dixon2, Andy Degraeve1, Davy Pissoort4, and Mohammad Ali Khorrami2, (1)Laird, Geel, Belgium, (2)Laird, Randolph, MA, (3)KU Leuven, technologiecampus oostende, oostende, Belgium, (4)Technology Campus Ostend, KU Leuven, Ostend, Belgium

1045 | ID 5555
Layout modeling to predict compliance with EMC standards of power electronic converters
Anne-Sophie Podlejski1, Arnaud Bréard2, Christian Vollaire2, Florent Morel1, Cyril Buttay4, and Eliana Rondon4, (1)Laboratoire AMPERE, Université de Lyon - Ecole Centrale de Lyon, Ecully, France, (2)Laboratoire Ampère, Ecully, France, (3)Ampere laboratory - Ecole Centrale de Lyon, Ecully, France, (4)Laboratoire Ampère, Villeurbanne, France

1110 | ID 5614
Field Coupling to Nonlinear Circuits in Resonating Structures
Thomas Wolfgramm1, André Manicke1, Hans Georg Krauthäuser1, (1) Chair of Electromagnetic Theory and Compatibility, Dresden University of Technology, Dresden, Germany

1135 | ID 5731
Radiation of Input Decoupling Network for Switching DC-DC Converters
Raul Bleicic1,2, Renaud Gillon3, Bart Nauwelaers2, and Adrijan Baric1, (1)Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia, (2)ESAT-TELEMIC, KU Leuven, Leuven, Belgium, (3)ON Semiconductor, Oudenaarde, Belgium

IMMUNITY MEASUREMENTS I

Technical Session | 0820 – 0935

SPONSORED BY TC2

CHAIR: Donald Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey USA

0820 | ID 5368
An Experimental Study of Electrostatic Discharge Immunity Testing for Wearable Devices
Takeshi Ishida1, Shuichi Nitta1, Fengchao Xiao2, Yoshio Kami3, Osamu Fujiwara4, (1)Engineering dept., Noise Laboratory Co., LTD, Sagamihara, Japan, (2)Comunication Engineering and Informations, University of ElectroCommunications, Tokyo, Japan, (3)Center of Industrial and Governmental Relation, University of Electro-Communications, Tokyo, Japan, (4)Nagoya Institute of Technology, Nagoya, Japan

0845 | ID 5417
Time-Domain Response of Bulk Current Injection Probes to Impulsive Stress Waveforms
Flavia Grassi, Giordano Spadacini and Sergio A. Pignari, Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

0910 | ID 5491
Design and Fabrication of Miniature Parallel Strip Line in PCB Technology for Immunity Testing
Umberto Paoletti1, Tatsuji Noma2, Nobumasa Nishiyama2, (1)Hitachi, Ltd., Yokohama Research Laboratory, Yokohama, Japan, (2)HGST Japan Ltd., Fujisawa, Japan
IMMUNITY MEASUREMENTS II
Technical Session | 1020 – 1135
SPONSORED BY TC2
CHAIR: Donald Heirman, Don HEIRMAN Consultants, Lincroft, New Jersey USA

1020 | ID 5355
A new Conducted Immunity Test Device for Inter-laboratory Comparisons
Emrah Tas and Frédéric Pythoud, Laboratory EMC, Federal Institute of Metrology METAS, Bern-Wabern, Switzerland

1045 | ID 5721
Stripline Injection Cell for High Frequency BCI Tests
Guillaume Andrieu, OSA department, XLIM Laboratory, Limoges, France and Alain Reineix, XLIM Laboratory, Limoges, France

1110 | ID 5557
On the Validity and Statistical Significance of HEMP Test Standards
Lars Ole Fichte1, Sven Knoth1, Stefan Potthast1, Frank Sabath2, Marcus Stiemer1, (1)Helmut Schmidt University, Hamburg, Germany, (2)Directorate 300, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany

ANTENNAS
Technical Session | 1400 – 1515
SPONSORED BY TC2
CHAIR: Andrew Marvin, University of York, York, UK

1400 | ID 5374
BEST STUDENT PAPER FINALIST
Antenna Factor Determination of a Shielded Standard Loop Antenna
Nino Richter1, Alexander Küllmer2, Achim Enders3, Axel Junge1, (1)EMC Section, European Space Agency -ESTEC, Noordwijk, Netherlands, (2)Institute for Electromagnetic Compatibility, TU Braunschweig, Braunschweig, Germany

1425 | ID 5393
Contactless Calibration of Loop Antennas in Comparison to Traditional Methods
Alexander Küllmer1, Nino Richter1, Martin Lahme1, Achim Enders3, Axel Junge1, (1)Institute for Electromagnetic Compatibility, TU Braunschweig, Braunschweig, Germany, (2)EMC Section, European Space Agency -ESTEC, Noordwijk, Netherlands

1450 | ID 5016
A Detailed Study on TEM Waveguides’ Field Distribution and Efficiency
David Hamann1, Heyno Garbe1, Thorsten Pusch2, Michael Suhrke2, (1)Institute of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, Hannover, Germany, (2)Electromagnetic Effects and Threats, Fraunhofer Institute for Technological Trend Analysis INT, Euskirchen, Germany
MEASUREMENT ANALYSIS

Technical Session | 1600 – 1740
SPONSORED BY TC2

CHAIR: Jan Luiken ter Haseborg, Technical University Hamburg-Harburg, Hamburg, Germany

1600 | ID 5464
Prediction of Magnetic Field Radiation Using Equivalent Current Distribution
Yinliang Diao¹, Weinong Sun¹, Peter Sai-Wing Leung¹, Timothy Yun-Ming Siu¹, Kwok Hung Chan², (1)City University of Hong Kong, Hong Kong, Hong Kong, (2)Hong Kong productivity council, Hong Kong, Hong Kong

1625 | ID 5648
EMI-Receiver Simulation Model with Quasi-Peak Detector
Timucin Karaca, Bernd Deutschmann and Gunter Winkler, Institute of Electronics, Graz University of Technology, Graz, Austria

1650 | ID 5339
Estimation of Absorber Performance Using Reverberation Techniques and Artificial Neural Network Models
Corey Vyhlidal¹, Vignesh Rajamani², Chuck Bunting³, Praveen Damacharla¹, Vijay Devabakhtuni³, (1)Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, (2)ECE, Oklahoma State University, Stillwater, OK, (3)Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, Ohio, USA

MODELING APPLICATIONS AND UNCERTAINTY ANALYSIS IN SIMULATIONS I

Technical Session | 0820 – 1000
SPONSORED BY TC9

CHAIR: Gilles Peres, Airbus Group Innovations, Toulouse, France

0820 | ID 4994
High Frequency Models of Toroidal Inductors for EMC Filtering
Felix Traub, Stanislav Skibin and Bernhard Wunsch, ABB Switzerland AG, Baden-Dättwil, Switzerland

0845 | ID 5716
Mutual Couplings between EMI Filter Components
Gundars Asmanis¹, Deniss Stepins¹, Aivis Asmanis¹, and Leonids Ribickis², (1)Latvian Electronic Equipment Testing Center, Riga, Latvia, (2)Institute of Industrial Electronics, Riga Technical University, Riga, Latvia

0910 | ID 5066
Field Uniformity in Radiated Field Immunity Tests
Bruno Audone, EMC Consultant, Torino, Italy, Roberto Colombo, IMQ S.p.A., Milan, Italy and Michele Borsero, INRIM, Torino, Italy

0935 | ID 5388
A Novel Approach for Noise-Immunity Analysis Using Channel Transfer Impedance on the Power Delivery Network of a Large-Scale Integration Chip
Sungwook Moon, Jihyun Lee and Jaeyoul Lee, System LSI Business Division, Samsung Electronics Co. Ltd., Hwaseong-si, Gyeonggik-do, South Korea
MODELING APPLICATIONS AND UNCERTAINTY ANALYSIS IN SIMULATIONS II

Technical Session | 1020 – 1200
SPONSORED BY TC9

CHAIR: Gilles Peres, Airbus Group Innovations, Toulouse, France

1020 | ID 5065
Uncertainty Evaluation of Conducted Emission Measurements by Means of Conformal Mapping
Bruno Audone, EMC Consultant, Torino, Italy, Alberto Francesco Finizio, Politecnico di Milano and Xi’an Jiaotong University, Milan, Italy and Roberto Colombo, IMQ S.p.A., Milan, Italy

1045 | ID 5083
Uncertainty Analysis in EMC Simulation Based on Stochastic Collocation Method
Bai Jinjun¹, Zhang Gang¹, Alistair Duffy, Chairman, IEEE EMC Society Standards Development and Education Committee¹, and Wang Lixin¹, (1)Harbin Institute of Technology, Harbin, China, (2) De Montfort University, Leicester, United Kingdom

1110 | ID 5612
Stochastic KRON’s Model Inspired from the Random Coupling Model
Chaouki Kasmi, Dr.¹, Olivier Maurice, Dr.², Gabriele Gradoni³, Thomas Antonsen Jr.¹, Edward Ott¹, and Steven Anlage³, (1)Wireless and Hardware Security Lab, French Network and Information Security Agency, Paris, France, (2) GERAC Electromagnétisme, Trappes, France, (3) School of Mathematical Sciences, The University of Nottingham, Nottingham, United Kingdom, (4) Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD

1135 | ID 5691
Waveguide Simulation Approach for Transmission Analysis of Reinforced Concrete Wall Structures
Simon Runke¹, Martin Zang², Joachim Strecker², Volkert Hansen², and Markus Clemens¹, (1)Chair of Electromagnetic Theory, Bergische Universität Wuppertal, Wuppertal, Germany, (2) Bergische Universität Wuppertal, Wuppertal, Germany

PRACTICAL APPLICATIONS OF NUMERICAL MODELING I

Technical Session | 1400 – 1540
SPONSORED BY TC9

CHAIR: Samuel Connor, IBM, Research Triangle Park, North Carolina, USA

1400 | ID 5430
Characterisation of Radiated Fields from PCBs in the Time Domain
Dave Thomas, Chris Smartt and Steve Greedy, Electrical Systems and Optics, University of Nottingham, Nottingham, United Kingdom

1425 | ID 5627
Challenges of Time Domain Measurement of Field-field Correlation for Complex PCBs
Chris Smartt¹, Dave Thomas¹, Hayan Nasser¹, Mohd Baharuddin¹, Gabriele Gradoni², Gregor Tanner², and Stephen Creagh², (1) Electrical Systems and Optics, University of Nottingham, Nottingham, United Kingdom, (2) School of Mathematical Sciences, The University of Nottingham, Nottingham, United Kingdom

1450 | ID 5694
A Fast Prediction for Shielding Effectiveness of Double Enclosures
Liping Yan¹, Xiang Zhao¹, Yong Kan¹, Changjun Liu¹, Kama Huang¹, and Haijing Zhou¹, (1) College of Electronics and Information Engineering, Sichuan University, Chengdu, China, (2) Institute of Applied Physics and Computation Mathematics, Beijing, China

1515 | ID 5447
Simulation of Conductive and Radiated Emissions from Wiper Motor According to CISPR 25 Standard
Irina Oganezova¹,², Robert Kado³, Badri Khvitia¹,², Anna Gheonjian¹,², and Roman Jobava³, (1) Tbilisi State University, Tbilisi, Georgia, (2) EMCoS Ltd., Tbilisi, Georgia, (3) Electromagnetic Compatibility (EMC), Fiat Chrysler Automobiles (FCA), Auburn Hills, MI
PRACTICAL APPLICATIONS OF NUMERICAL MODELING II

Technical Session | 1600 – 1740
SPONSORED BY TC9

CHAIR: Ronald Rambousky, Bundeswehr Research Institute for Protective Technologies and NBC-Protection (WIS), Munster, Germany

1600 | ID 5002
Delay-Rational Model of Lossy and Dispersive Multiconductor Transmission Lines
Maria De Lauretis, Computer Science, Electrical and Space Engineering, Luleå University of technology, Luleå, Sweden, Giulio Antonini, Dipartimento Ingegneria Industriale e dell’Informazione e di Economia, Università degli Studi dell’Aquila, L’Aquila, Italy and Jonas Ekman, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden

1625 | ID 5329
Efficient Analytical Calculation of the Plane Wave Coupling to Uniform Transmission Lines With Arbitrary Load Resistances in Time Domain
Mathias Magowski and Ralf Vick, Chair for Electromagnetic Compatibility, Otto-von-Guericke-University, Magdeburg, Germany

1650 | ID 5814
Modeling the Influence of Corona Discharge on High-Voltage Surges Propagating along Transmission Lines using TLM
John Evans¹, Dave Thomas², and Steve Greedy². (1) University of Nottingham, Nottingham, United Kingdom, (2) Electrical Systems and Optics, University of Nottingham, Nottingham, United Kingdom

1715 | ID 5635
Coupled Arc Discharge Models in the TLM Method
Ahmed Elkalsh, Ana Vukovic, Phillip Sewell and Trevor Benson, University of Nottingham, George Green Institute for Electromagnetics Research, Nottingham, United Kingdom

SIGNAL AND POWER INTEGRITY V

Technical Session | 0820 – 1000
SPONSORED BY TC10

CHAIR: Bill Chen, Yangtze Delta Region Institute of Tsinghua University, China.

0820 | ID 5540
Compact Hybrid Open Stub EBG Structure for Power Noise Suppression in WLAN Band
Chi-Kai Shen, and Tzong-Lin Wu, National Taiwan University, Taipei City, Taiwan

0845 | ID 5375
Noise Immunity Design for Multilayer Printed Circuit Boards Using Electromagnetic Simulation
Mamoru Kamikura, Dr., Norihiko Akashi and Yuichiro Murata, Dr., Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan

0910 | ID 5181
A Black-Box Measurement-Based Modeling Method for the RF Emission and Immunity Behavior of Integrated Circuits
Hugo Pues and Celina Gazda, Melexis, Tessenderlo, Belgium

0935 | ID 5625
Analysis of Intra-chip Digital Noise Coupling Path in Fully LTE Compliant RF Receiver Test Chip
Masahiro Yamaguchi¹, Peng Fan¹, Satoshi Tanaka¹, Sho Muroga, Dr., and Makoto Nagata¹. (1) Department of Electrical Engineering, Tohoku University, Sendai, Japan, (2) Department of Electrical and Electronic Engineering, National Institute of Technology, Toyota College, Toyota, Japan, (3) Graduate School of System Informatics, Kobe University, Kobe, Japan
SIGNAL AND POWER INTEGRITY VI

Technical Session | 1020 – 1135
SPONSORED BY TC10

CHAIR: Bill Chen, Yangtze Delta Region Institute of Tsinghua University, China

1020 | ID 5156
Conducted Emission Characteristics of CCM Boost Converter with SiC Schottky Barrier Diode
Takaaki Ibuchi and Tsuyoshi Funaki, Osaka University, Suita, Osaka, Japan

1045 | ID 5334
Susceptibility of Chopper OpAmps to EMI
Franco Fiori, DET, Politecnico di Torino, Torino, Italy

1110 | ID 5760
LF H-field immunity Surface Scan Method
Mart Coenen, BSc, Mgt, EMCMCC, Breda, Netherlands and Bharat Kathari, MSc, IBI Group, New Delhi, India

NANOTECHNOLOGY AND ADVANCED MATERIALS IN EMC I

Technical Session | 1400 -1740
SPONSORED BY TC11

CO-CHAIRS: Sabrina Sarto, Sapienza University of Rome, Rome, Italy Marina Koledintseva, Oracle, EMC Hardware Design, USA

1400 | ID 5722
MWCNTs Nanocomposites for space applications
Marco Nicoletto¹, Demis Boschetti¹, Mauro Giorelli² and Patrizia Savì², (1) Electrical System and EMC, Thales Alenia Space, Torino, Italy, (2)Politecnico di Torino, Torino, Italy

1425 | ID 5353
Optimal Terahertz Shielding Performances of Flexible Multilayer Screens Based on Chemically Doped Graphene on Polymer Substrate
Alessandro Giuseppe D’Aloia¹, Marcello D’Amore¹ and Maria Sabrina Sarto², (1)Sapienza University of Rome, Roma, Italy, (2)DIAEE, Sapienza University of Rome, Roma, Italy

1450 | ID 5048
Modeling of Multilayer Graphene (MLG)-Based Structures at Different Temperatures
Da-Wei Wang¹, Wen-Sheng Zhao¹, Wenchao Chen¹, Wen-Yan Yin Sr.² and Hong-Ke Ma³, (1)Zhejiang University, Hangzhou, China, (2)Hangzhou Dianzi University, Hangzhou, China, (3)Centre for Optical and EM Research (COER), Zhejiang University, Hangzhou, China, (4)Science and Technology on High Power Microwave Lab, Institute of Applied Electronics, Mianyang, China

1515 | ID 5597
Electromagnetic Shielding Properties of Nano Carbon Filled Silicone Rubber Composites
Joseph Vas and Joy Thomas, Indian Institute of Science, Bangalore, India
NANOTECHNOLOGY AND ADVANCED MATERIALS IN EMC II

Technical Session 1600 - 1650
SPONSORED BY TC11

CO-CHAIRS: Sabrina Sarto, Sapienza University of Rome, Rome, Italy Marina Koledintseva, Oracle, EMC Hardware Design, USA

1600 | ID 4993
Dynamically Reconfigurable Metamaterials for Shielding and Absorption in the GHz Range
Francesco de Paulis¹, Carlo Rizza², Alessandro Ciattoni³, Elia Palange¹ and Antonio Orlandi¹, (1) Industrial and Information Engineering and Economics, University of L’Aquila, L’Aquila, Italy, (2) Department of Science and High Technology, University of Insubria, Como, Italy, (3) National Research Council, CNR-SPIN, L’Aquila, Italy

1625 | ID 5349
HF Characteristics of Laminated Structure Consisting of Negative Permittivity and High Permittivity Materials
Shinichiro Yamamoto¹, Masayoshi Okita¹, Kenichi Hatakeyama¹ and Takanori Tsutaoka², (1) Graduate School of Engineering, University of Hyogo, Himeji, Japan, (2) Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan

INTENTIONAL ELECTROMAGNETIC INTERFERENCE (IEMI) PROTECTION OF CRITICAL INFRASTRUCTURES

SS5 | Special Session | 0820 – 1200
Konferenzraum 5

CHAIR: Frank Sabath, Bundeswehr Research Institute for Protective Technologies and NBC-Protection (WIS), Munster, Germany

0820 | ID 5020
IEMI-Testing of Electronic Systems in Critical Infrastructure
Ronald Rambousky¹, André Bausen², Sebastian Lange³ and Frank Sabath³, (1) Electromagnetic Effects and HPEM, Bundeswehr Research Institute for Protective Technologies, Munster, Germany, (2) Electromagnetic Effects and HPEM, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany, (3) Scientific Computing, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany

0845 | ID 5354
Analysis of IEMI Effects on a Computer Network in a Realistic Environment
M. Kreitlow¹, H. Garbe² and F. Sabath¹, (1) Bundeswehr Research Institute for Protective Technologies and NBC-Protection (WIS), Munster, Germany, (2) Leibniz Universität Hannover, Hannover, Germany

0910 | ID 5459
HPEM Vulnerability of Radiation Meters Used in Security Relevant Scenarios
C. Adami, W. Berky, M. Joester, M. Suhrke and T. Pusch, Fraunhofer Institute for Technological Trend Analysis (INT), Euskirchen, Germany

0935 | ID 5495
Uncertainty Analysis in System-level Vulnerability Assessment for IEMI
C. Mao, Northwest Institute of Nuclear Technology, Xi’an, China
NANOTECHNOLOGY APPLIED TO EMC

WS16 | Tutorial | 0830 - 1200
Seminarraum 1
SPONSORED BY TC11

CHAIR: Alessio Tamburrano, Sapienza University of Rome, Rome, Italy

Nanotechnology is the engineering of functional systems at the molecular and atomic scale and represents a technological revolution that is shaking scientific academia, industries, and almost all areas of society. Nanotechnology has the potential to develop many novel materials and devices with a vast range of applications. Over the last ten years several studies have been focused on carbon nanotubes, graphene nanoribbons, nanostructured multifunctional materials and single/multi-phase composites filled with nanoparticles. The outstanding performance and capabilities of these novel materials have demonstrated a great impact in different EMC applications: signal integrity of electrical nano-interconnects and nano-vias for high speed electronics, multifunctional electromagnetic shields, lightweight and high performance radar absorbing materials, just to mention some examples.

The tutorial is intended to introduce EMC engineers and researchers to nanoscience and nanotechnology showing how fundamental EMC topics (like measurements, transmission line, shielding and protection) should be “revisited” at nanoscale. It will present new materials, devices and processes for EMC applications, with particular attention to theoretical modeling approaches, simulation methods and experimental characterization techniques.

The tutorial will provide participants with opportunities for professional development and the chance to gain a better understanding of nanotechnology and its implications in EMC issues. The tutorial will contribute to the development of a debate on the state-of-art as well as on future research possibilities.

1. Introduction to Nano-EMC
 Alessio Tamburrano, Sapienza University of Rome

2. Modeling and Shielding Performances of Graphene-Based Multilayer Screens
 M. D’Amore, Sapienza University of Rome

3. Graphene-Polymer Nanocomposites for Radar Absorbing Materials
 M. S. Sarto, Sapienza University of Rome
DEMONSTRATIONS AND EXPERIMENTS

1000-1600
Exhibit Hall

ID H7 | 1000 - 1200
Electrostatic Discharges (ESD)
Frits Buesink, University of Twente, Enschede, The Netherlands

ID H14 | 1000 - 1200
Capacitive and Inductive Coupling
Stefan Parr, Kai Rathjen, Helmut-Schmidt-Universität, Hamburg, Germany

ID H15 | 1000 - 1200
Radiated Emissions of Cables
Bob Scully, NASA, League City, USA

ID H13 | 1400 - 1600
Reducting Conducted Electromagnetic Interference
Stefan Parr, Kai Rathjen, Helmut-Schmidt-Universität, Hamburg, Germany

ID H4 | 1400 - 1600
Three tubes
Ramiro Serra, Alexander van Deursen, Eindhoven University of Technology, Eindhoven, The Netherlands

ID H5 | 1400 - 1600
Non-conservative Electric Field, a Demo for Courses on EMC and Electromagnetic Fields
Alexander van Deursen, Eindhoven University of Technology, Eindhoven, The Netherlands

HPEM TESTING AND ANALYSIS

Technical Session | 1400 – 1540
SPONSORED BY TC5

CO-CHAIRS: William Radasky¹, Frank Sabath², (1) Metatech Corporation, Goleta, California, USA, (2) Bundeswehr Research Institute for Protective Technologies and NBC-Protection (WIS), Munster, Germany

1400 | ID 5251
ESD Performance Evaluation of Powered High-Speed Interfaces
Sebastian Koch¹, Harald Gossner¹, Horst Gieser², and Linus Maurer³, (1) Intel Deutschland GmbH, Neubiberg, Germany, (2) Fraunhofer-Institut für Mikrosystemtechnik und Festkörperphysik EMFT, München, Germany, (3) Universität der Bundeswehr München, Munich, Germany

1425 | ID 5129
Using an In-line Uninterruptable Power Supply as TEMPEST ‘Filter’ for Naval Vessels
Frank Leferink¹,², Hans Bergsma¹, (1) Thales Nederland B.V., Hengelo, The Netherlands; (2) University of Twente, Enschede, The Netherlands

1450 | ID 5420
Development of a Surge Simulation Code VSTL REV Based on the 3D FDTD Method
Akiyoshi Tatematsu, Electric Power Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Yokosuka, Japan

1515 | ID 4500
EMC Analysis and Characterization of New Nanocomposite Laminates for Aeronautical
En-Xiao Liu¹, Bui Viet Phuong¹, Warintorn Thitsartarn², Chaobin He³, and Jayven Yeo², (1) Electronics & Photonics Department, Institute of High Performance Computing (IHPC), A*STAR, Singapore, Singapore, (2) Synthesis & Integration, Institute of Materials Research and Engineering, A*STAR, Singapore, Singapore
Technical Program

IEMI PULSERS AND EFFECTS EVALUATIONS

Technical Session | 1600 – 1805

SPONSORED BY TC5

CO-CHAIRS: William Radasky¹, Frank Sabath², (1) Metatech Corporation, Goleta, California, USA, (2) Bundeswehr Research Institute for Protective Technologies and NBC-Protection (WIS), Munster, Germany

1600 | ID 5600

Experimental Investigations on the Pulsed Power Switch of a HIRA based UWB System

Vijay Bhosale¹, Joy Thomas M.², D.C. Pande³, and Joseph Vas², (1) DRDO, LRDE, Bangalore, India, (2) Electrical Engineering, Indian Institute of Science, Bangalore, India, (3) ÉMI-EMC, LRDE, Bangalore, India

1625 | ID 5043

High Power Radiators and E-Field Sensors for Sub-Nanosecond Electromagnetic Pulses

Vladimir Fedorov, Lab. of Power EM-impacts, Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia

1650 | ID 5258

Destructive High-Power Microwave Testing of Simple Electronic Circuit in Reverberation Chamber

Tomas Hurtig, Leif Adelow, Mose Akyuz, Mattias Elfsberg, Anders Larsson and Sten E Nyholm, Swedish Defence Research Agency, Norra Sorunda, Sweden

1715 | ID 5406

Effect of Pulsed Interference on an ASK Receiver

Stefan van De Beek¹, Silvo Jeunink¹ and Frank Leferink¹,², (1) University of Twente, Enschede, The Netherlands, (2) Thales Nederland B.V., Hengelo, The Netherlands

1740 | ID 5766

Status and Progress of IEC SC 77C High-Power Electromagnetics Publications in 2015

William Radasky¹, Richard Hoad², (1) Metatech Corporation, Goleta, CA, USA, (2) QinetiQ, Farnsborough, United Kingdom

EMC DIAGNOSTICS OF COMPLEX SYSTEMS

SS3 | Special Session | 1400 - 1650

Seminarraum 1

CHAIR: Vladimir Mordachev, Belarusian State Univ. of Informatics and Radioelectronics, Minsk, Belarus

There are numerous situations where the EM environment is extremely complex with large numbers of RF systems resulting in unintentional coupling. These systems may be onboard a ship, aircraft or orbital station and ground-based such as an airport or seaport.

Worst case behavioral modeling of system elements as well as specialized techniques for discrete and non-linear modeling is all needed to EMC analysis and diagnostics. Papers in this session will cover:

- Behavioral modeling of full complex systems and the elements that compose them.
- Worst case behavioral models of spurious coupling using highly efficient techniques
- Efficient measurement techniques and computer modeling for the extraction of critical element characterization that is necessary for the full analysis.

Large scale systems present extremely complex EMC challenges. This session will provide insight to methods and techniques that can be used to examine such cases in a practical and logical manner.

1400 | ID 5090

Worst-Case Estimation of Electromagnetic Background Near Ground Surface Created by Heterogeneous Radioelectronic Environment

Vladimir Mordachev, R&D Department, Belarusian state university of informatics and radioelectronics, Minsk, Belarus

1425 | ID 5093

Reduction of the Radiated Power of Cellular Base Stations on Urban Area at High Intrasytem EMC Requirements

Vladimir Mordachev, R&D Department, Belarusian state university of informatics and radioelectronics, Minsk, Belarus
Many different kinds of transmission lines, wiring structures, PCB, chip packages, etc. are used in modern electrical engineering and electronics. They serve for transmission of signals and energy. In addition to their useful functions they can be subject to the influence of various electromagnetic interference sources, both external and generated by adjacent devices. In this case, these elements work as passive antennas and scatterers. Moreover, the scattered current can propagate along the transmission lines to the ports of receivers and may enter the sensitive parts of electronics causing failure or even damage to the devices. The frequency range of the interferences can be larger than the working frequency range of the devices. To protect the sensitive electronics from pulse interferences it is useful to calculate the response in the time domain. These transmission lines are located in various environments: such as above a finite conducting ground, inside the enclosures of different geometrical shapes, and may include some shielding from external electromagnetic interferences. It was shown this circumstance can change the picture of coupling radically. The problem of the calculation of currents and voltages in transmission lines (with linear or non-linear loads) in complex environments is of great importance in EMC.

Existing numerical methods (Method of Moments, Transmission-Line Matrix Method, etc.) allow considering specific cases only, but do not describe general physical picture of the interaction. On the other hand, classical transmission line approximations for the lines as in free space as well as in resonators are applicable only for a restricted frequency range. This special session will examine the analytical description, mathematical and numerical approaches to the interaction of high-frequency electromagnetic fields with wire structures in free space and in cavities.
1400 | ID 5407
On the Validity Limits of the Transmission Line Theory in Evaluating Differential-Mode Signals along a Two-Wire Line above a Ground Plane
Nicolas Mora¹, Gaspard Lugrin¹, Farhad Rachidi¹, Isabelle Junqua¹, Jean-Philippe Parmantier¹, Sergey Tkachenko², Marcos Rubinstein³, Markus Nyffeler⁴ and Pierre Bertholet⁵,
(1)EMC Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, (2)Electromagnetic Compatibility Laboratory, The Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, (3)DEMR/CEM, ONERA – The French Aerospace Lab, F-31055, Toulouse, France, (4)Chair of EMC, Otto-von-Guericke University, Magdeburg, Germany, (5) Institute for Information and Communication Technologies, University of Applied Sciences Western Switzerland, Yverdon-les-Bains, Switzerland, (6)HPE Laboratory, Federal Department of Defence-Armasuisse, Thun, Switzerland

1425 | ID 5658
Network Analysis of Full Wave Multi-conductor Transmission Lines
Fabian Ossevorth¹, Hans Georg Krauthäuser¹, Jürgen Nitsch²,
(1)Electromagnetic Theory and Compatibility, Technical University Dresden, Dresden, Germany, (2)Otto-von-Guericke University, Magdeburg, Germany

1450 | ID 5209
Application of Generalized Reflection and Transmission Coefficients to Inhomogeneous Conductors at High Frequencies
Ronald Rambousky¹, Jürgen Nitsch², Sergey Tkachenko² (1) Electromagnetic Effects and HPEM, Bundeswehr Research Institute for Protective Technologies, Munster, Germany, (2) Otto-von-Guericke University, Magdeburg, Germany

1515 | ID 5009
Analytic Approximation of Natural Frequencies of Bent Wire Structures above Ground
Felix Middelstaedt¹, Sergey Tkachenko², Ronald Rambousky¹, Ralf Vick¹, (1) Technical University, Darmstadt, Germany, (2) Chair of EMC, Otto-von-Guericke University, Magdeburg, Germany, (3) Electromagnetic Effects and HPEM, Bundeswehr Research Institute for Protective Technologies, Munster, Germany

1600 | ID 5177
Numerical Simulation of the Stochastic Electromagnetic Field Coupling to Transmission Line Networks
Mathias Magdowski and Ralf Vick, Chair for Electromagnetic Compatibility, Otto-von-Guericke-University, Magdeburg, Germany

1625 | ID 5367
Statistical Properties of Low Frequency Voltages Induced by a Plane-Wave Field Across the Terminal Loads of a Random Wire-Bundle
Giordano Spadacini, Flavia Grassi and Sergio A. Pignari, Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

1650 | ID 5786
On the Derivation of Generalized Transmission Line Equations of Cylindrical Waveguides with Irregular Deformed Surfaces
Wolfgang Mathis, Elektrotechnik und Informatik, Leibniz Universität Hannover, Hannover, Germany and Richard Mathis, Physics, Universität Goettingen, Goetttingen, Germany

1715 | ID 5528
AutoCAD Application for LPS, Grounding and EMC Problems
Dmitry Shishigin, Postgradual student, Vologda, Russia, Nikolay Korovkin, Head of theoretical electrical engineering department, St.-Petersburg, Russia and Sergey Shishigin, Head of electrical engineering department, Vologda, Russia
AUTOMOTIVE EMC
WS18 and WS23 | Workshop | 0830 - 1730
Konferenzraum 1
SPONSORED BY TC2

CHAIR: Marco Klingler, Peugeot Citroën Automobiles, Vélizy-Villacoublay, France

Automotive electric / electronic systems are endlessly growing in complexity with a permanent constraint of a constant or reduced time-to-market. Therefore, there is a strong need to constantly improve the efficiency of the EMC related tasks throughout the entire development process, starting from the design phase until the full-vehicle validation phase. This workshop intends to present an overview of the most recent industrial advances in the field of automotive EMC design, modeling and simulation as well as in the field of automotive standards, testing and measurements. The presentations in this workshop will cover EMC issues at system, sub-system, equipment and component levels. In particular, topics addressed by the speakers will include hybrid power-train systems EMC analysis, antenna implementation, equipment design, printed-circuit-board optimization, and electric/electronic component characterization.

1. **0830 - 0900 | Overview / State-of-the-Art and Challenges in Automotive EMC Standardization and Regulation**
 Ariel Lecca, PSA Peugeot-Citroën, Vélizy-Villacoublay, France

2. **0900 - 0930 | System Level EMC Simulations of an Automotive Radiated Immunity Configuration**
 Anna Gheonjian¹, Irina Oganezova¹, Moncef Kadi², Xavier Bunlon³, (1) EM Consulting and Software, EMCoS Ltd., Tbilisi, Georgia, (2) IRSEEM / ESIGELEC, Rouen, France (3) Renault S.A.S., Guyancourt, France

3. **0930 - 1000 | Advanced Methods for the Simulation of Immunity Behaviour of a Car Body in the Frequency Domain or Time Domain**
 Markus Laudien, Frédéric Bocquet, ANSYS, France

4. **1030 - 1100 | 1 Gbps on Unshielded Wiring Harnesses in an Automotive Environment**
 Todd H. Hubing, Clemson University International Center for Automotive Research, Greenville, SC, USA
5. **1100 - 1130 | Calculation of RF Interference from Coupled Shielded Hybrid Cables Utilizing Current Probe Measurements**
 Peter Hahne¹, Martin Aidam², Andreas Ludwig³, Xiaofeng Pan⁴, Markus Schick⁵; (1) Ingenieurbüro Dr. Peter Hahne, Bad König, Germany, (2) Daimler AG, Germany, (3) Altair Engineering GmbH, Germany

6. **1130 - 1200 | EMC Analysis of Shielded Cables and Connectors for Power Transmission in Electric and Hybrid Electric Vehicle**
 Stephan Frei, Abid Mushtaq, TU Dortmund University, Germany

7. **1400 - 1430 | EMC Simulation of a Variable Frequency Drive**
 Andreas Barchanski, CST AG, Darmstadt, Germany

8. **1430 - 1500 | Prediction of Radiated Emission Levels for Automotive Products using EM Simulations**
 Reddy V. Sreenivasulu, Jan Hansen, Peter Kralicek, Kranti Kumar; Robert Bosch GmbH, Germany

9. **1500 - 1530 | Complexities of Resonance Influences on Automotive Sensor and Signal Lines**
 Jean-Roger K. Kuvedu-Libla, Delphi Electronics & Safety, Bascharage, Luxembourg

10. **1600 - 1630 | EMI Characterization of DC Motors**
 Flavio Canavero, Riccardo Trinchero, Igor Stievano, Politecnico di Torino, Torino, Italy

11. **1630 - 1700 | Reverberation Chambers for Vehicle Testing**
 Martin Aidam, Daimler AG, Germany

12. **1700 – 1730 | Evolving Automotive EMC Testing**
 Garth D’Abreu, ETS-Lindgren, Cedar Park, Texas, USA

WORKING EMC ENGINEER SKILLS

WS19 and WS24 | Tutorial | 0830 - 1730
Konferenzraum 2
SPONSORED BY TC1

CHAIR: Kimball Williams, Dearborn, MI, USA

Explore some of the more critical aspects of working as an EMC engineer that are of a non-technical nature. These skills are not taught in any engineering curricula but, can be critical to building a successful engineering career. In the AM and PM sessions leadership of the EMC Society will discuss seven of these factors than can make the difference between career success and the unfortunate alternative.

1. **Introduction: The ‘Soft Skills’, Who needs them?**
 Kimball Williams, Dearborn, Michigan, USA

2. **Fundamentals of Leadership**
 Elya Joffe, IEEE EMC-Society President Emeritus, Electromagnetic Solutions, Ltd., Tel Aviv, Israel

3. **Human Factors in Advancing Your Engineering Career**
 Bob Hofmann, IEEE EMC-Society President Emeritus, Hofmann Engineering, Chicago, Illinois, USA

4. **Writing a Transaction Paper**
 John Norgard, NASA Johnson Space Center, Houston, TX, USA

5. **Effective Meetings**
 Elya Joffe, IEEE EMC-Society President Emeritus, Electromagnetic Solutions, Ltd., Tel Aviv, Israel

6. **Effective Presentations**
 Bruce Archambeault, Missouri University of Science and Technology, Rolla, Missouri, USA and IBM, Research Triangle Park, North Carolina, USA

7. **Networking Skills**
 Dan Hoolihan, Hoolihan EMC Consulting, Minneapolis, Minnesota, USA

8. **EMC for Business Managers**
 Joanna Hill, EMC Consultant, JPHill LLC, Hazel Park, Michigan, USA
MEASUREMENT UNCERTAINTY – CHALLENGES AND SOLUTIONS

WS20 | Tutorial | 0830 - 1200
Konferenzraum 3

CO-CHAIRS: Doug Kramer, ETS-Lindgren, Cedar Park, Texas, USA
Carlo Carobbi, University of Florence, Italy
Janet O’Neil, ETS-Lindgren, Cedar Park, Texas, USA

In the near future, the evaluation of Measurement Uncertainty (MU) won’t be the same as we have known since the first edition of the Guide to Uncertainty in Measurement (GUM) was published in 1993. Some important changes are indeed expected in the second edition of the GUM, tentatively scheduled for publication in 2016. Such changes are mainly required in order to make the GUM consistent with its supplements and address the very fundamental idea of probability. The scope of the presentation by Prof. Carobbi, in particular, will show how the new concepts will practically affect evaluation of MU.

There has been an increasing need for accredited calibration test services in the commercial EMC, military and aerospace test communities. Part of the accreditation process based on ISO 17025 is the determination of measurement uncertainty – a requirement that is often misunderstood or misinterpreted. This tutorial will provide an overview and discussion of measurement uncertainty to further the knowledge of this subject in the international EMC testing community.

Tips and tools will be provided to make those associated with measurement uncertainty educated and comfortable moving forward in this area.

 Dennis Lewis, The Boeing Company, Seattle, WA, USA

 Carlo F. M. Carobbi, University of Florence, Italy and member of the Joint Task Force between IEC TC 77 and CISPR on Measurement Uncertainty

3. Measurement Model Based Uncertainty Analysis for Antenna Calibrations
 Zhong Chen, ETS-Lindgren, Cedar Park, TX, USA

4. Application of Test Instrumentation Uncertainty Data for Practical EMC Testing and Test Reports.
 Per Thåstrup Jensen, DELTA, Denmark and member of IEC SC77B/WG10

IEC HPEM STANDARDIZATION UPDATE

WS21 | Tutorial | 0830 - 1200
Konferenzraum 4
SPONSORED BY TC5

CHAIR: William Radasky, Metatech Corporation, Goleta, CA, USA

High power electromagnetic transients are in the news seemingly every day including the threats of high-altitude electromagnetic pulse (HEMP) produced by nuclear weapons detonated in space and high-tech electromagnetic weapons that can cause intentional electromagnetic interference (IEMI). Unfortunately there is a lot of misinformation in the press, and this tutorial will clarify the terms and the waveforms of interest. IEC SC 77C has been working since 1992 standardizing these environments and their coupling to cables and equipment, developing test methods for cables and equipment, and developing different protection methods for new and existing facilities that need to be protected from these threats. These main three aspects of the completed work will be reviewed for the attendees. In addition the work underway in the IEC today and the accomplishments of other organizations in this field will be reviewed. The scheduled speakers have been involved in this work for many years as officers and participants in the work of IEC SC 77C and will be able to answer all questions that may arise from their presentations.

1. HEMP and IEMI Scenarios and the Resulting Electromagnetic Waveforms
 William Radasky, Metatech Corporation, Goleta, CA, USA; Richard Hoad, QinetiQ Group plc, Farnborough, UK

2. Description of Test Methods to Reproduce HEMP and IEMI Environment Waveforms in Order to Test Protective Devices, Equipment and Systems
 Richard Hoad, QinetiQ Group plc, Farnborough, UK; William Radasky, Metatech Corporation, Goleta, CA, USA

3. Description of Methods to Protect Against HEMP and IEMI
 Richard Hoad, QinetiQ Group plc, Farnborough, UK; William Radasky, Metatech, Goleta, CA, USA

4. Description of Standards Under Development in the IEC and a Review of the Standardization Work Accomplished and Underway in the ITU-T, the IEEE EMC Society and Cigré SC C4
 William Radasky, Metatech Corporation, Goleta, CA, USA; Richard Hoad, QinetiQ Group plc, Farnborough, UK
REGULATORY REQUIREMENTS FOR WIRELESS SYSTEMS

WS22.1 | Workshop | 0830 - 1000
Konferenzraum 6

CHAIR: Mike Violette, Washington Laboratories and American Certification Body, McLean, Virginia, USA

An overview of the regulatory requirements for authorizing wireless devices in the USA, Canada, Europe and Japan. An explanation of the compliance routes applicable for different types of device and the testing requirements facing the product manufacturer and test lab.

Devices can typically be separated into categories or types, such as licensed transmitters and unlicensed transmitters. There also exists a mixture of compliance routes, such as certification, verification or declaration of conformity. In addition, each geographical region has its own testing and compliance process. The presentation will clarify the requirements and differences for each of the regions covered.

This presentation is important for wireless product manufacturers and anyone involved in the regulatory compliance process for wireless transmitters and receivers.

ASSESSMENT AND APPROVALS FOR WIRELESS MODULE TECHNOLOGY

WS22.2 | Workshop | 1030 - 1200
Konferenzraum 5

CHAIR: Michael Derby, American Certification Body, Hampshire, England, United Kingdom

An overview of the process for assessing or installing wireless transmitter, receiver and transceiver modules in the USA, Canada, Europe and Japan. The presentation will include an explanation of the process for authorizing the wireless module for regulatory compliance and also for installing a module into other host equipment.

There is a growing industry for pre-approved radio modules, supplied to the market as a product for incorporation into other host devices. The processes for authorizing these modules can vary greatly between the geographical regions covered in this presentation. In addition, the requirements and responsibilities placed on the installer of the pre-assessed module varies.

The presentation will clarify the requirements and differences for each of the regions covered.

This presentation is important to manufacturers of wireless module devices and also to manufacturers of equipment which integrate wireless modules. This presentation is also of interest to test labs and anyone involved in the regulatory compliance process for wireless modules or equipment incorporating modules; such as the M2M industry.
DEBUGGING EMI TEST FAILURES

WS25 | Workshop | 1400 - 1730
Konferenzraum 3
SPONSORED BY TC4

CHAIR: Ross M. Carlton, *National Instruments, Austin, TX, USA*

The workshop will begin with a presentation on the challenges of managing and leading troubleshooting efforts. These challenges can be as difficult to overcome unless they are addressed early and consistently. The presentation will illuminate potential problem areas and provide insight on techniques that can be tailored to any design environment.

The focus of the remaining presentation will be on debugging radiated RF emissions test failures. We will begin with finding the failure during a compliance radiated RF emissions measurement at an internal or external EMC lab. The presentation will focus on techniques and tools, typical fixes, and other insights for troubleshooting radiated RF emission failures using a compliance test facility, such as an open area test site or semi-anechoic chamber, where the availability of the test facility is limited due to scheduling or cost.

We then move to troubleshooting the failure on a workbench or at a pre-compliance test facility. The presentations will focus on system and PCB level techniques, primarily using near field probes. Utilizing these measurements to debug the failure and gain confidence in the product performance prior to another compliance test will be discussed. Demonstrations using specialized test fixtures as well as real-world products will enhance the learning experience.

1. **1400 - 1405 | Introduction**
 Ross M. Carlton, *National Instruments, Austin, Texas, USA*

2. **1405 - 1450 | Leading and Managing EMI Troubleshooting**
 John G. Kraemer, *Rockwell Collins, Cedar Rapids, Iowa, USA*

3. **1450 - 1530 | Troubleshooting Radiated Emissions Failures at the EMC Lab**
 Ross M. Carlton, *National Instruments, Austin, Texas, USA*

4. **1600 - 1630 | Fast, Low-Cost Near-Field Benchtop Debugging Techniques**
 Keith Armstrong, *Cherry Clough Consultants Ltd., Brocton, Stafford, United Kingdom*

5. **1630 - 1700 | Real Examples of Debugging EMC Test Failures at the PCB Level**
 Arturo Mediano, *University of Zaragoza, Zaragoza, Spain*

6. **1700 - 1730 | Panel Session**
 All Presenters

IEMI EFFECTS ON CRITICAL INFRASTRUCTURES: THE EUROPEAN PROJECT STRUCTURES

WS26 | Workshop | 1400 - 1730
Konferenzraum 4

CHAIR: Marco Righero, *Istituto Superiore Mario Boella, Torino, Italy*

Security and quality of life in industrialized countries depend on continuous and coordinated performance of a set of infrastructures (energy systems, ICT systems, transportation, etc.) which can be therefore defined as critical infrastructures (CIs). STRUCTURES—Strategies for the improvement of critical infrastructure Resilience to Electromagnetic attackS—aims at analysing possible effects of electromagnetic (e.m.) attacks and, in particular, of intentional e.m. interference (IEMI) on such CIs, at assessing their impact for our defence and economic security, at identifying innovative awareness and protection strategies and at providing a picture for the policy makers on the possible consequences of an electromagnetic attack. The project started on the 1st of July 2012 and will be near its conclusion for EMC 2015 in Dresden. The workshop, featuring speakers from the involved partners, will give an account of the challenges faced by the consortium, will describe the techniques used to manage the different problems, and will present the outcomes of three years of investigations.

1. **General Introduction**
 Aldo Bonsignore, *Ingegneria Dei Sistemi, Roma, Italy*

2. **The Beginning of the Project and Some Review**
 Benjamin Menssen, *Leibniz Universität Hannover, Hannover, Germany; Kai Rathjen, Helmuth-Schmidt, Universität, Hamburg, Germany*

3. **Experimental Characterization of Critical Systems and Components**
 Nicolas Mora, *Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Michael Camp, Rheinmetall Waffe Munition GmbH, Unterluess, Germany*

4. **Numerical Analysis**
 Mario Antonelli, *Ingegneria Dei Sistemi, Roma, Italy; Simon Runke, Bergische Universität Wuppertal, Wuppertal, Germany*

5. **Protection Strategies**
 Marcos Rubinstein, *University of Applied Science and Arts Western Switzerland (HES-SO), Yverdon-les-bains, Switzerland*

6. **IEMI Detection Systems: A Low Cost IEMI Detector**
 John Dawson, *University of York, York, U.K.; Werner Hirschi, University of Applied Science and Arts Western Switzerland (HES-SO), Yverdon-les-bains, Switzerland*

7. **Guidelines & Methodologies for Risk Assessment and Mitigation of IEMI**
 Frank Leferink, *University of Twente, Enschede, and THALES, Hengelo, The Netherlands; Francesca De Simio, University Campus Bio-Medico di Roma, Roma, Italy*
ESD: DATA CENTER ESD OCCURRENCE RATE, ESD TO DISPLAYS AND INTEGRATED ESD PCB IC CO-DESIGN

WS27 | Tutorial | 1400 - 1730
Konferenzraum 5

CO-CHAIRS: David Pommerenke, Missouri University of Science and Technology, Rolla, Missouri, USA; Harald Gossner, Intel, Neubiberg, Germany

Data centers can save energy by using outside air for cooling. However, the energy saving is strongly reduced if moisture needs to be added to the air to avoid operating the data center at low humidity, such as 25% or 8%. In proposing a wider operating range of air intake relative humidity concern was raised that the ESD induced failure rate may increase to an unacceptable level. In a larger study the effect of humidity on ESD charge voltages and discharge currents was investigated. The flooring / shoe combination was varied for humidities from 8% to 45% between 5°C and 38°C. Further, charge creation by sitting up from a chair or removing a garment was included and charge creation by cable handling. The data set is analyzed by its maximal voltages, walking voltages and methods are shown to extrapolate the probability to higher voltage levels. It is concluded that the ESD induced failure rate will only increase by a factor of about 2-3 if the humidity is reduced from 25% to 8% for the worst case floor / shoe combination investigated. However, the risk of damaging voltage caused by other user action, such as sitting up from a chair is significant. Countermeasures such as conductive floors and shoes nearly eliminate any risk if the data center’s equipment is ESD robust by IEC 61000-4-2 test standard at 4kV contact mode and 8kV air discharge.

ESD to displays can damage or upset the display. Throughout the cell phone, tablet and laptop industry this is a serious problem as possible user interface innovations are delayed by failing ESD robustness. This part of the workshop address ESD to displays by analyzing the test methods derived from the IEC 61000-4-2 standard showing that the “display down” test scenario is very severe and may not reflect any user scenario. Further it is shown that sparks discharged to the glass area introduce large surface charges having sub-nanosecond rise times and many Ampere of current. Although no spark is visible damage and upset errors are common. The tutorial will explain test methods, simulation methods and how to visualize the charge distribution on the surface.

Efficient ESD design for system level ESD can only be achieved if board and device level protection circuitry match each other. Purpose of this tutorial is to provide an understanding of board/IC interaction under IEC 61000-4-2 testing conditions and to discuss useful design strategies supported by appropriate tools. This is meant to be beneficial both for ESD engineers of ICs and board designers responsible for EMC/ESD compliant design of the system. While it has clearly been pointed out that even elevated IC level HBM targets are insufficient for achieving the required IEC 61000-4-2 ESD level, more attention has to be put to the detailed turn-on and clamping behavior of IC level and board level ESD protection components. High current characterization of board protection and IO circuit by TLP is a first step. This enables the board designer to assess the behavior of IC pins and select appropriate board protection elements. A first-time-right design optimization will be explained which based on high current models of board components and IC IOs and the numerical simulation of the protection network under ESD conditions.

Various test methods are available to evaluate the efficiency of implemented protection on board level quantitatively.

The course is divided into two parts, where one focuses on the general overview of failure mechanism and the protection design against hard fails, while the second one addresses soft fails and the typical ESD/EMC design strategies to protect against these. Also strategies for soft error root cause analysis are discussed. Methods for the characterization of ICs and PCBs responses to ESD induced soft errors by conducted and field coupling are shown.

1. Integrated ESD PCB IC Co-Design
 Harald Gossner, Intel, Neubiberg, Germany

2. ESD: Data Center ESD Occurrence Rate and ESD to Displays
 David Pommerenke, Missouri University of Science and Technology, Rolla, Missouri, USA
PRODUCT SAFETY ENGINEERING SOCIETY

WS29 | Workshop | 1400 – 1730 | Seminarraum 7
SPONSORED BY IEEE PSES

CHAIR: Jan Swart, Phoenix, Arizona, USA

This workshop is an introductory event to introduce the Product Safety Engineering Society Symposium to be held in 2016. This workshop will introduce you to the IEEE Product Safety Engineering Society, product compliance and will also help product designers and safety engineers understand product failures.

Today’s safety and compliance engineer’s face challenges far different from just a few years ago. They are managing the safety and compliance of new exciting technologies which involve very complex products. Product compliance may be UL, CSA and IEC Standards, European Norms, EU Directives, RoHS, WEEE, REACH, higher scrutiny on recalls, a multitude of different country regulatory requirements and methods of claiming compliance, Prop65, Toy Safety, Hazard ID and Risk Assessments being incorporated into Standards, and so much more.

It is challenging to know the technical requirements, as well as stay on top of new test methods and the latest equipment, and also remain current on the latest Regulations, Laws, Directives, and other legal requirements.

This knowledge base has to cover the global marketplace, and we also have to be able to explain it to all the stakeholders, from designers to marketing and even corporate personnel. With all of that, the Product Safety Engineering Symposium has become more important than ever. We hope to provide all of our attendees with valuable presentations and papers targeted for each product category and track. We would also like to share our knowledge with Product Designers and new Compliance Engineers.

1. An Introduction to the Product Safety Engineering Society
 Elya B. Joffe

2. Electronic Product Component Failure Mechanisms
 Jan Swart, Ph.D., Phoenix, AZ

3. Linking Risk and Reliability—Mapping the Output of Risk Assessment Tools to Functional Safety Requirements for Safety Related Control Systems

To download the EMC 2015 Symposium and EMC Europe proceedings, please visit:

http://www.emc2015.emcss.org

To download the EMC 2015 Symposium and EMC Europe Personal Scheduler, please visit:

http://emc.confex.com/emc/emc2015/schedule/index.cgi
2016 Asia-Pacific International Symposium on Electromagnetic Compatibility & Signal Integrity

After the resounding success of a series of APEMC Symposia since 2006, and the increasing growth of signal integrity activities, the 7th APEMC will feature the topics of "Signal Integrity", and renamed as Asia-Pacific International Symposium on Electromagnetic Compatibility / Signal Integrity &Technical Exhibition (APEMC&SI 2016), which will be held in Shenzhen, China, May 18 to 21, 2016. Shenzhen has been selected to host 7th APEMC not only because of its strategic location next to Hong Kong, but also because of its fabulous facilities and world-class electronic industry and research centers.

This event will continue the APEMC spirit and address the world-wide EMC community with a primary focus on the Asia-Pacific region. The 7th APEMC will serve as a broad exchange platform for both academia and industry. The symposium will recognize innovations and technology leaderships through the Best Symposium Paper Award, the Best Student Paper Award, and other recognitions. The symposium will cover the entire scope of electromagnetic compatibility, electromagnetic environment and signal integrity issues. Prospective authors are invited to submit original papers on their latest research results. We also solicit proposals for focused sessions, industrial forums, workshops and tutorials.

Symposium Topics

- EMC Management and Standards
- EMC Measurements and Environment
- Lightning
- High Power Electromagnetics
- ESD and ESD Protection Designs
- Smart Power Grid EMC
- System-Level EMC and Protection
- Automotive, Railway and Ship EMC
- Wireless Power Transfer EMC
- EM Immunity
- EMC in Space
- IC EMC
- Signal Integrity
- Power Integrity
- TSV for 3D System Integration
- Wireless Communication EMC
- Computational Electromagnetics
- Wearable devices & biomedical EMC
- Multiphysics and Nanotechnology
- EMC for 5G System

Important Dates

Proposals for special/focused sessions, workshops and tutorials, industrial forums: Oct. 16, 2015
Preliminary paper submissions (3 pages PDF only): Dec. 5, 2015
Notification of acceptance: Jan. 29, 2016
Final paper submission: Mar. 9, 2016
TUESDAY, AUGUST 18 | 1300 – 1400 | TERRASSENEBENE

Posters will be on display from 1020 - 1800.

CHAIR: Mauro Feliziani, President International Steering Committee EMC Europe

4624 Investigation on the Effect of Impedance Changes in Broadband Antennas with Varying Antenna Height on Radiated Emission Measurement Below 1 GHz
Shinichi Okuyama, Kakegawa EMC Center, NEC Platforns, Ltd., Kakegawa, Japan, Ikuo Makino, Fujitsu General EMC Laboratory, Ltd., Kawasaki, Japan, Hiroyuki Shimanoe, S-Tech Inc., Kawasaki, Japan and Hidenori Muramatsu, VCCI Council, Tokyo, Japan

4826 A Measurement System for Radiated Transient Electromagnetic Interference Based on General Purpose Instruments
Marco Azpurua, Grup de Compatibilitat Electromagnètica, Universitat Politècnica de Catalunya, Barcelona, Spain, Ferran Silva, Universitat Politècnica de Catalunya, Grup de Compatibilitat Electromagnètica, Barcelona, Spain and Marc Pous, Universitat Politècnica de Catalunya, Barcelona, Spain

4858 Compensation Method for the Coupling Error Between the EUT and TEM Cell in E-field Probe Isotropic Calibration
Huan Wang, Ph.D., China Academy of Information and Communications Technology, Beijing, China and Zhong Chen, ETS-Lindgren, Cedar Park, TX

5194 On the Quality of a Real Open Area Test Site
Inès Barbary, Reiner Pape, Lars-Ole Fichte, Sebastian Lange, Thomas Kleine-Ostmann, Thorsten Schrader, Martin Schaarschmidt and Marcus Stiemer, (1)Helmut Schmidt University, Hamburg, Germany, (2)Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, (3)Scientific Computing, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Munster, Germany

5250 Analytical Prediction of Common Mode Noise in a Source Stirred Reverberation Chamber
Alfredo De Leo, Valter Mariani Primiani, Paola Russo and Graziano Cerri, Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, Italy

5293 EMC Analysis Including Receiver Characteristics - Pantograph Arcing and the Instrument Landing System
Robert Geise, Oliver Kerfin, Björn Neubauer, Georg Zimmer and Achim Enders, Institute for Electromagnetic Compatibility, University of Braunschweig, Braunschweig, Germany

5316 An Interlaboratory Comparison for Mobile Phone SAR
Andrei Marinescu, ICMET, Craiova, Romania, Yahya Emre Gülersoy, ICTA MSL Directorate, Ankara, Turkey and Gernot Schmid, Seibersdorf Labor GmbH, Seibersdorf, Austria

5327 Various Estimations of Composite Q-factor with Antennas in a Reverberation Chamber
Philippe Besnier, Christophe Lemoine and Jerome Sol, (1)ETR-CNRS-Institut National des Sciences Appliquées de Rennes, Rennes, France, (2)ETR-Institut National des Sciences Appliquées de Rennes, Rennes, France

5338 Feasibility Study of Multi-Frequency Test in a Single Rotation of Mode Stirred Reverberation Chamber
Vignesh Rajamani, PhD, ECE, Oklahoma State University, Stillwater, OK and Gustav Freyer, Consultant, Monument, CO, USA

5361 Limitations of a Stripline for Immunity Tests on Road Vehicle Components
Moawia Al-Hamid, Ralf Vick, Martin Krüger and Philipp Wollmann, (1)Chair for Electromagnetic Compatibility, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany, (2)Chair for Electromagnetic Compatibility, Otto-von-Guericke-University, Magdeburg, Germany, (3)Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
Optimization of Experiment Requirement in EMC Using Re-sampling Techniques
Chaouki Kasmi, Dr. 1, Emmanuel Prouff, Dr. 2, Sébastien Lallèchère, Dr. 3, Sébastien Girard 4, and Pierre Bonnet 5, (1)Wireless and Hardware Security Lab, French Network and Information Security Agency, Paris, France, (2)Wireless and Hardware Security Lab, French Network and Information Security Agency, 75007, France, (3)CNRS UMR 6602, Institut Pascal Clermont université, Université Blaise Pascal, Aubière, France, (4)Physics Department -Pascal Institute - CNRS, UMR 6602 PHOTON axis - EMC group, Blaise Pascal University, Aubière, France, (5)Physics Department Pascal Institute - CNRS, UMR 6602 PHOTON axis - EMC group, Blaise Pascal University, Aubière, France

Alternative Conducted Emission Measurements with LISN Simulation & CISPR 16 Voltage Probe
Osman Sen, Soydan Cakir, Savas Acak and Mustafa Cetintas, TUBITAK UME, Kocaeli, Turkey

Direct Power Injection (DPI) Simulation Framework and Postprocessing
Andrea Lavarda and Bernd Deutschmann, Institute of Electronics, Graz University of Technology, Graz, Austria

Adapter and Method for Improving the LISN Input Impedance Measurement Accuracy
François Ziadé 1, Mohamed Ouameur 1, Miha Kokalj 3, André Poletaeff 1, Burot Pinter 3 and Djamal Allal 1, (1)Electrical Department, Laboratoire National de Métrologie et d’Essais (LNE), Trappes, France, (2)Polytech Clermont Ferrand, Clermont Ferrand, France, (3)Slovenian Institute of Quality and Metrology (SIQ), Ljubljana, Slovenia

Alternative Conducted Immunity Testing with Multiple CDNs and Wire Winding
Soydan Cakir, Osman Sen, Savas Acak and Mustafa Cetintas, TUBITAK UME, Kocaeli, Turkey

Wide Band Measurements in Time-Domain with Current and Voltage Probes for Power Losses Evaluation and EMC Measurements on Power Converters
Kevin Loudiere 1, Arnaud Bréard 1, Christian Vollaire 1, François Costa 2, Houmam Moussa 2 and Régis Meuret 2, (1)Laboratoire Ampère, Ecully, France, (2)Université Paris-Est SATIE-CNRS, Cachan, France, (3)Labinal Power Systems, Réau, France

Time-Frequency Processing Adapted for the Different Electromagnetic Compatibility Issues in the Railways Domain
Mohamed Raouf Kousri 1,2,3, Virginie Deniau, Dr. 2, Sylvie Baranowski 2, Marc Heddebaut 2 and Jean Rioul 2, (1)Technological Research Institute, Railenium, Famlans, France, (2)COSYS, IFSTTAR, villeneuve d’ascq, France, (3)IEMN, University Lille1 Sciences and Technologies, Villeneuve d’Ascq, France

Broadband Phase Estimation Using Non-Coherent Measurement using a Spectrum Analyzer for EMI Applications
Zongyi Chen 1, Shubhankar Marathe 2, Hamed Kajbaf 3, Stephan Frei 4 and David Pommerenke 2, (1)On-board Systems Lab - TU Dortmund, Dortmund, Germany, (2)EMC Laboratory, Missouri University of Science and Technology, Rolla, MO, (3)Amber Precision Instruments, San Jose, CA, (4)TU Dortmund University, Dortmund, Germany

Spark-less Electrostatic Discharge (ESD) on Display Screens
Atieh Talebzadeh 1, Yingjie Gan 2, Ki-Hyuk Kim 1, Yiqiang Zhang 1 and David Pommerenke 2, (1)EMC Laboratory, Missouri University of Science and Technology, Rolla, MO, (2)School of Science, Wuhan University of Technology, Wuhan, MO, China, (3)Nokia, Communication Company, Beijing, China

Study on Triangular EBG Unit Cell Structures for Suppression of SSN in Power/Ground Planes
Jong Hwa Kwon, Radio Technology Research Department, ETRI, Daejeon, South Korea

Nonlinear Loaded Microstrip Interconnet Analysis with Temperature Effect
Blaise Ravelo, Dr., Electronics, IRSEE M, Saint Etienne du Rouvray, France
5278 CSRR Common-Mode Filtering Structures in Multilayer Printed Circuit Boards
Sang Goo Kang, Garrett Shaffer, Christopher Kodama, Christopher O’Daniel and Edward Wheeler, Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN

5395 Passive Device Degradation Models for a Electromagnetic Emission Robustness Study of a Buck DC-DC converter
He Huang, Alexandre Boyer and Sonia Ben Dhia, LAAS CNRS, Toulouse, France

5584 Calculation of Power-Supply-Induced Jitter at a 3-D IC Channel including ESD Protection Circuits
Eunkyeong Park¹, Jongjoo Lee², Youngwoo Park² and Jingook Kim¹, (1)Ulsan National Institute of Science and Technology, Ulsan, South Korea, (2)Samsung Electronics, Hwaseong, South Korea

5591 An Application of the Preference Set-based Design Method to Filter Designs
Kawakami Masashi¹, Fengchao Xiao, Doctor², Kami Yoshio¹ and Ishikawa Haruo¹, (1)Dept. of Communication Engineering and Informatics, The University of Electro-Communications, Tokyo, Japan, (2)Comunication Engineering and Informations, University of Electro-Communications, Tokyo, Japan, (3)The University of Electro-Communications, Tokyo, Japan

5619 Verification of Novel Extended Mixed-Mode S-parameters on Three-Conductor Lines
Nan Zhang, School of Electric and Electronic Engineering, Sungkyunkwan University, Suwon, South Korea and Wansoo Nah, Department of Electrical and Electronics Engineering, Sungkyunkwan University, Suwon, South Korea

5734 Signal Integrity - EMI Affects the Reliability of Embedded Electronic Systems
Kirsten Weide-Zaage, RESRI IMS-AS, Leibniz Universität Hannover, Hannover, Germany

5767 A Methodology to Characterize USB3 IO Link Signal Margin Variation in High Volume Manufacturing
Steven Ji¹, Xiaoning Qi¹ and Sudeep Puligundla², (1)Intel Corporation, Santa Clara, CA, (2)Intel Corporation, Hillsboro, OR

5777 Stochastic Macromodeling for Hierarchical Uncertainty Quantification of Nonlinear Electronic Systems
Giulio Antonini¹, Tom Dhaene², Luc Knockaert³, Domenico Spina⁴, Francesco Ferranti⁵, Georges Gielen⁶ and Dimitri De Jonghe⁶, (1)Dipartimento Ingegneria Industriale e dell’Informazione e di Economia, Università degli Studi dell’Aquila, L’Aquila, Italy, (2)Dept. of Information Technology, Ghent University, Gent, Belgium, (3)Information Technology, Ghent University, Ghent, Belgium, (4)Information Technology, Ghent University - iMinds, Ghent, Belgium, (5)Department of Fundamental Electricity and Instrumentation, Vrije Universiteit Brussel, Brussels, Belgium, (6)Elektrotechniek ESAT-MICAS, KU Leuven, Leuven, Belgium
WEDNESDAY, AUGUST 19 | 1300 – 1400 | TERRASSENEBENE

Posters will be on display from 1020 - 1800.

CHAIR: Hans Georg Krauthäuser, General Chair EMC Dresden 2015

5282 Design Considerations of a Damped Sinewave Generator
 Karl Thorup, MSEE, EMC, MOOG Inc., Salt Lake City, UT, USA

5642 Evaluation of The Electric-Field Transfer Functions Between IEMI Sources and Banking IT Equipment
 Simon Runke1, Mirjana Stojilovic1, Sana Sliman2, Marcos Rubinstein1, Markus Clemens1, Nicolas Mora1 and Farhad Rachidi1,
 (1)Chair of Electromagnetic Theory, Bergische Universität Wuppertal, Wuppertal, Germany, (2)Institute of Information
 and Communication Technologies, University of Applied Sciences Western Switzerland, Yverdon-les-Bains, Switzerland, (3)
 Institute for Information and Communication Technologies, University of Applied Sciences Western Switzerland, Yverdon-
 les-Bains, Switzerland, (4)EMC Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, (5)Electromagnetic
 Compatibility Laboratory, The Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

5668 A Combined Time and Frequency Domain Characterization Method for Modeling of Overvoltage Protection
 Elements
 Stanislav Scheier1, Dominik Deelmann1, Stephan Frei1, Christian Widemann1 and Wolfgang Mathis1, (1)On-board Systems
 Lab - TU Dortmund University, Dortmund, Germany, (2)TU Dortmund University, Dortmund, Germany, (3)Leibniz Universität
 Hannover, Hannover, Germany

5818 Mathematical Expression of Electromagnetic Pulse in Immunity Standards
 Corneliu Ursachi1, Elena Helerea2, Elena Larisa Mariut2 and Marius Daniel Calin3, (1)Electric Engineering and Applied Physics,
 Transilvania University of Brasov, Brasov, Romania, (2)Transilvania University, Brasov, Romania, (3)Electrical Engineering and
 Applied Physics, Transilvania University of Brasov, Brasov, Romania

4484 Accurate Measurement of Transmission Line Parameters for Automotive Ethernet
 Matthias Hampe, Department of Electrical Engineering, EMC, Ostfalia, Wolfenbuettel, Germany

5203 Design of Conductive Shield for Wireless Power Transfer System for Electric Vehicle Considering Automotive Body
 Hongseok Kim, Chiuk Song, Dong-Hyun Kim, Yeonje Cho and Joungho Kim, Korea Advanced Institute of Science and
 Technology (KAIST), Daejeon, South Korea

5651 BER Performance of GSM/EDGE Receiver under the Influence of adjacent Channel Interference
 Zhaohai Jiang, Universität der Bundeswehr München, Neubiberg, Germany, Harald Gossner, Intel Deutschland GmbH,
 Neubiberg, Germany and Walter Hansch, Faculty of Electrical Engineering and Information Technology, Universitaet der
 Bundeswehr, Neubiberg, Germany

4935 Modeling of Rectifiers for Resonance Studies: A Pivotal Approach
 Felix Kalunta, M.SC, Electrical/Electronic Department, Electrical/Electronic Department, University of Lagos., Nigeria, Lagos,
 Nigeria and Frank Okafor, Ph.D, Professor, Electrical/Electronic Engineering Department, University of lagos, Lagos, Nigeria

5126 Some EMC Aspects of a 2 MV Marx Generator with Sensitive Diagnostic Equipment in the Immediate Vicinity
 Alexander van Deursen and Pavlo Kochkin, Electrical Engineering, Eindhoven University of Technology, Eindhoven,
 Netherlands

5503 Specific Absorption Rate (SAR) Evaluation of Human Body Model in the Presence of Radar Wave Radiation on a
 Warship Deck
 Yang Guo1, Jian Wang2, Hong-Ke Ma3, Lian-Dong Wang4 and Wen-Yan Yin Sr1,2, (1)Centre for Optical and Electromagnetic
 Research (COER), Zhejiang University, Hangzhou, China, (2)School of Information Science and Engineering, Ningbo
 University, Ningbo, China, (3)Science and Technology on High Power Microwave Lab, Institute of Applied Electronics,
 Mianyang, China, (4)State Key Lab of Complex Electromagnetic Environment Effects on Electronics and Information
 System (CEMEEE), Luoyang, China, (5)Key Lab of Ministry of Education of Design and EMC of High-Speed Electronic Systems,
 Zhejiang University/Shanghai Jiao Tong University, Shanghai, China
5168 Research on Twelve-phase Round-Shaped Transformers Applied in Rectifier Systems
Tiejun Wang, Fang Fang, Xiaoyi Jiang and Lv Yang, Naval University of Engineering, Wuhan, China

5534 Wideband Characterization and Modeling of Coupled Inductors under Temperature Variations
Fahim Hami1, 2, Habib Boulzazen2 and Moncef Kadi3, (1)VeDeCoM, Versailles, France, (2)IRSEE/ESIGELEC, Saint Etienne du Rouvray, France, (3)Electronics and Systems, IRSEE/ESIGELEC, Rouen, France

5542 Electromagnetic Interfering Characteristics into the Air by a Buried Conductor as a Secondary ELF Line Source
Sangmu Lee1, Pyung-Dong Cho1 and Dongho Kim2, (1)Protocol Engineering Center, Electronics and Telecommunications Research Institute, Daejeon, South Korea, (2)Sejong University, Seoul, South Korea

5661 Predicting the Conducted Emissions of Switched-Mode Power Converters Including Component and Printed Circuit Board Parasitics
Sören Weßling, Faculty of Electrical Engineering, Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Hamburg, Germany and Stefan Dickmann, Institute of Fundamentals of Electrical Engineering, Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Hamburg, Germany

5697 Modeling the Common Mode Impedance of Motor Drive Systems using the Antenna Wire Concept
Rob Mestrom, Department of Electrical Engineering, Electromagnetics Group, Eindhoven University of Technology, Eindhoven, Netherlands, Anne Roč’h, Electrical Engineering Faculty - Electromagnetics, Eindhoven University of Technology, Eindhoven, Netherlands and Yingzhe Xi, Eindhoven University of Technology, Eindhoven, Netherlands

5774 Electric Current Exposure Evaluation of Hand in Current Perception Threshold Measurement
Yoshitsugu Kamimura, Information Science, Utsunomiya University, Utsunomiya-shi, Japan

5836 Behavior of Fast Variable Loads at the Connection to the Power Supplying Source
Petre-Marian Nicolae, Electrical Engineering, Energetic, and Aeronautics, University of Craiova, Craiova / Dolj County, Romania, Ileana-Diana Nicolae, Computer Science and Information Technology, University of Craiova, Craiova / Dolj County, Romania, Dinut - Lucian Popa, Electrical Engineering, Energetic, and Aeronautics, University of Craiova, Craiova, Romania and Marian - Stefan Nicolae, Electromecanics, Environment, and Industrial Informatics, Craiova, Romania

5039 Statistical Estimation of Maximum Electric Field in Electrically Large Cavity using Extreme Value Theory
Tarek Bdour, OSA Department, XLIM Research Institute, Limoges, France and Alain Reineix, XLIM Laboratory, Limoges, France

5143 Processing of EMC Data with Factor Analysis
Onofrio Losito, R&D, ITEL Telecomunicazioni srl, Ruvo Di Puglia (BA), Italy, Bruno Audone, Audone Consulting, Torino, Italy and Vincenzo Dimiccoli, ITEL Telecomunicazioni srl, Ruvo di Puglia, Italy

5409 Propagation Effects on Lightning Magnetic Fields Over Hilly and Mountainous Terrain
Dongshuai Li1, 2, Javad Paknahad3, Farhad Rachidi1, Marcos Rubinstein*, Keyhan Sheshyekani*, Zhenhui Wang1 and Qilin Zhang1, (1)Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology (NUIST), Nanjing, China, (2)Electromagnetic Compatibility Laboratory, The Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, (3)Shahid Beneshti University, Tehran, Iran, (4)Institute for Information and Communications Technologies, HEIG-Vd, Switzerland, Yverdon-les-bains, Switzerland

5693 Calculation of Electromagnetic Emission Using Discontinuous Galerkin Time Domain Method
Iskander Badzagua1, 2, Diana Eremian1, Badri Khvitiia1, Zviad Kuchadze1, Giorgi Chiqovani1, Zurab Sukhiashvili1, Anna Gheojian1, 2 and Roman Jobava1, (1)EMCoS Ltd., Tbilisi, Georgia, (2)Tbilisi State University, Tbilisi, Georgia, (3)EMCoS Research Laboratory, EMCoS Ltd., Tbilisi, Georgia
Technical Program

THURSDAY, AUGUST 20 | 1300 – 1400 | TERRASSENEBENE

Posters will be on display from 1020 - 1800.
CHAIR: Bob Scully, President IEEE EMC Society

4850 Reformation of the Japanese Guidelines for Cellular Phone Use in Hospitals
Eisuke Hanada, Department of Information Science, Saga University Graduate School, Saga, Japan and Takashi Kano, Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Japan

5460 Grounded Theory and EMC immunity test
Per Thaastrup Jensen, Mr., DELTA, Hoersholm, Denmark

5793 Can the New EMC Directive, 2014/30/EU, Stem the Tide of Non-Compliant Products
Nick Wainwright, York EMC Services Ltd, York, United Kingdom

5124 Grounded Theory and EMC immunity test
Per Thaastrup Jensen, Mr., DELTA, Hoersholm, Denmark

5578 Directivity and Effective Radius of an Electrically Large EUT with Attached Wires
Xiaowei Wang, OVGU University Magdeburg, Magdeburg, Germany

4561 Identification of Electromagnetic Radiation Source with Support Vector Machines
Dan Shi1, Junjian Bi2, Chao Li3, Zhiliang Tan4, Hongbo Wang5 and Yougang Gao6, (1)Beijing university of posts and telecommunications, Beijing, China, (2)Shijiazhuang Mechanical Engineering, Shijiazhuang, China, (3)ministry of industry and information technology, Beijing, China, (4)ministry of industry and information technology, Beijing, China, (5)Beijing university of posts and telecommunications, Beijing, China

4897 Protection Against Common Mode Currents on Exposed Cables

4946 Prediction of PCB Radiated Emission in Shielding Cavity Using Equivalent Dipole Modeling
Wenjie Kong, Zhejiang University, HangZhou, China and Er-Ping Li, Zhejiang University, Hangzhou, China

4966 Diagnosis and Suppression of the Electromagnetic Interference in Vehicle Co-site Radio System
Xie Ma, Southwest Communication Institute, Chengdu, China

4981 Analysis of a Healthcare Platform RF Emission in Indoor Environment
Blaise Ravelo, Dr.,1 Jorge Miranda2, Jorge Cabral3, Stefan Wagner1, Christian Pedersen2, Mukthiar Memon3, Morten Mathiesen4 and Adam Jastrzebski5, (1)Electronics, IRSEEM, Saint Etienne du Rouvray, France, (2)Centro Algoritmi, University of Minho, Guimarães, Portugal, (3)Dept. of Engineering, Aarhus University, Aarhus, Denmark, (4)Sekoia, Aarhus, Denmark, (5)University of Kent, Canterbury, United Kingdom

5152 Grounding Design for Low-Cost Ball Grid Array Package with High Shielding Effectiveness
Keiju Yamada, Research Scientist, Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Japan, Masaaki Ishida, Chief Research Scientist, Toshiba Corporation, Kawasaki, Japan and Tomohiro Iguchi, Senior Research Scientist, Toshiba Corporation, Yokohama, Japan

5309 Statistical Approach to the Result of FM Broadcast Frequency Deviation Measurements
Georgij Leontjev, Dr., Radio monitoring, Communications Regulatory Authority of the Republic of Lithuania, Vilnius, Lithuania
5422 Optimization of Spectrum Monitoring Network in VHF-UHF Range Using Irregular Structure of Network
Vadym Blagodarnyi, Doctor of Philosophy, Associate professor, Scientific and Methodical Department, State
Enterprise "Ukrainian State Centre of Radio Frequencies", Kiev, Ukraine and Mykola Kaliuzhnyi, Doctor of
Philosophy, Senior Researcher, Scientific and Research Laboratory, Ministry of Education, Kharkiv, Ukraine

5243 EMC Analysis Between Fixed Service and Broadcasting Satellite Service in the Band 10.7 – 11.7 GHz
Interference Evaluation
Ryszard Zielinski, Electronics, Wrocław University of Technology, Wrocław, Poland

5343 Compact Wideband Balanced Filter for Eliminating Radio-Frequency Interference on Differentially-
fed Antennas
Ying-Cheng Tseng¹, Pei-Yang Weng¹ and Tzong-Lin Wu²; (1)National Taiwan University, Taipei City, Taiwan, (2)
Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan

5346 A General Measurement Method of Parameter Extraction for High-Frequency Mounted Cables with
Arbitrary Connectors
Xinwei Song, Junjun Wang, Bing Li and Donglin Su, Institute of EMC Technology, Beihang University, Beijing, China

5383 Characterization of EMI Effects in Communication Data Link System in the Presence of High-power
Radar Radiation on the Warship Platform
Jing Jin¹,², Hao Xie³, Gang Zhao³, Jian Wang³, Manxi Wang¹ and Wen-Yan Yin Sr.², (1)State Key Lab of Complex
Electromagnetic Environment Effects on Electronics and Information System (CEMEE), Luoyang, China, (2)
Centre for Optical and EM Research (COER), Zhejiang University, Hangzhou, China, (3)Science and Technology
on High Power Microwave Lab, Institute of Applied Electronics, CAEP, Miyanyang, China, (4)School of Information
Science and Engineering, Ningbo University, Ningbo, China

5507 Active Absorption/Transmission FSS Using Diodes
Shinya Kitagawa¹, Ryosuke Suga¹, Kiyomichi Araki² and Osamu Hashimoto¹, (1)Aoyama Gakuin University,
Sagamihara, Japan, (2)Tokyo Institute of Technology, Tokyo, Japan

5559 An Extension of Schelkunoff’s Shielding Theory to Anisotropic Conducting Multilayer Materials
Fabian Happ, Frank Gronwald and Heinz-D. Brüns, Institut für Theoretische Elektrotechnik, Technische
Universität Hamburg-Harburg (TUHH), Hamburg, Germany

5758 Modeling absorbing materials for EMI mitigation
Qian Liu¹, Xiangyang Jiao¹, Jing Li¹, Victor Khilkevich¹, Paul Dixon¹, Yoeri Arien² and James Drewniak¹, (1)EMC
Laboratory, Missouri University of Science and Technology, Rolla, MO, (2)Laird, Randolph, MA, (3)Laird, Geel,
Belgium, (4)Missouri S&T EMC Laboratory, Missouri University of Science and Technology, Rolla, MO

5759 Experimental Analysis and Modeling of Coaxial Transmission Lines with Soft Shield Defects
Hossein Manesh, ESYCOM Laboratory, Paris-Est University, Marne-la-Vallée, France, Abélín Kameni, Université
Paris-Sud, GeePs (Group of electrical engineering of Paris), Gif-sur-Yvette, France, Florent Loete, GeePs (Group of
electrical engineering of Paris), Gif-sur-Yvette, France, Jérôme Genoulaz, R&D, LABINAL POWER SYSTEMS,
BLAGNAC, France, Lionel Pichon, GeePs (Group of electrical engineering of Paris), UMR 8507 CNRS, Université
Paris-Sud, UPMC, Gif-sur-Yvette, France and Odile Picon, ESYCOM - EA 2552 Université Paris-Est, Marne-la-Vallée,
France

5762 Using Simulation & Joint Time/Frequency Domain Analysis to Evaluate Absorber/Lossy Material
Performance in Resonant Cavities
Bruce Archambeault, PhD, Systems & Technology Group, IBM Corporation, RTP, NC, Michael Varner, Rose-
Hulman University, Terre Haute, IN, Jiawei Zhang, Rose-Hulman, Terre Haute, IN, Samuel Connor, Systems Group,
IBM Corporation, RTP, NC and Edward Wheeler, Electrical and Computer Engineering, Rose-Hulman Institute of
Technology, Terre Haute, IN
ANTENNAS AND EM RADIATION
Monday, August 17 | 1400 - 1530
Seminarraum 4

Professor Jan Carlsson, SP Technical Research Institute of Sweden, Borås, Sweden

- What is an antenna, applications, antenna types
- Some theory, definitions and principles: electromagnetic fields, field regions, plane waves, polarization, reciprocity
- Antenna characteristics: Equivalent circuit models for transmit and receive, impedance, impedance matching, radiation properties (power density, radiation intensity, directive gain, directivity, relative power gain, antenna efficiency, radiation efficiency), point-to-point communication (LOS), multipath communication (diversity and combining methods)
- Example of antenna types and their characteristics: Dipole, monopole, log-periodic dipole, horn, reflector, microstrip, IFA, PIFA
- Small antennas: Definition, fundamental limitations
- Broadband antennas
- Antenna measurements: Gain, radiation pattern, classical measurement ranges, outdoor and indoor, reverberation chamber

CORRELATING BETWEEN EMC TEST FACILITIES AND THE ROLE OF EUT DIRECTIVITY
Monday, August 17 | 1600 - 1730
Seminarraum 4

Dr. Perry Wilson, NIST, Boulder, CO, USA

Emission and immunity tests can be made at a variety of EMC test facilities. These include open area test sites (OATS), semi-anechoic chambers (SAC), fully anechoic rooms (FAR), and reverberation chambers (RC). Ideally each of these facilities would yield the same test result for a given test object, that is, a product that passes a test in one facility would pass tests in the others and a product that fails in one facility would fail in the others. This ideal case could be met if emission and immunity data could be exactly correlated between EMC facilities. However, because most test objects are quite complex and because present EMC facility test methods sample different subsets of the full range of possible emission and immunity test variables, exact correlation of test data is typically not possible. This lecture will review simple models to describe emission and immunity tests and correlation at the above facilities, and the role of directivity as one transitions from simple (electrically small) to complex (electrically large) patterns.
SIGNAL INTEGRITY ENGINEERING FOR HIGH-SPEED LINKS

Tuesday, August 18 | 1400 - 1530

Seminarraum 4

Professor Christian Schuster, Technical University Hamburg-Harburg (TUHH), Hamburg, Germany

Introduction to the fundamentals of signal integrity engineering for high-speed digital systems with a focus on packaging aspects. Topics that will be addressed include lumped discontinuities, transmission line effects, crosstalk, via and power plane effects, return current issues, and measurement techniques for Gbps links.

PRINTED CIRCUIT BOARD DESIGN AND LAYOUT FOR EMC

Wednesday, August 19 | 1400 - 1530

Seminarraum 4

Professor Todd H. Hubing, Clemson University International Center for Automotive Research, Greenville, SC, USA

- Importance of proper board layout for EMC
- Identifying the unintentional antennas on a board
- Identifying noise sources and coupling mechanisms
- Circuit board grounding vs. current return
- Proper use of design rules and modeling tools
- Design examples

SHIELDING, CABELING AND FILTERING FOR EMC

Tuesday, August 18 | 1600 - 1730

Seminarraum 4

Dr. Franz Schlagenhaufer, The University of Western Australia, Perth, Australia

Electromagnetic fundamentals as the common base for understanding principle shielding, cabling and filtering techniques.

- Shielding: Low frequency electric and magnetic fields, Schelkunoff approach, shielding degradation due to openings, practical shielding enclosure design
- Cabling: Coaxial and twisted pair cables, coupling between cables, cable transfer impedance, grounding of cable screens, examples
- Filtering: Filter parameters, installation, importance of low-impedance grounding, ferrites

POWER INTEGRITY

Wednesday, August 19 | 1600 - 1730

Seminarraum 4

Professor Tzong-Lin Wu, National Taiwan University, Taipei, Taiwan

- Advanced Packaging and Power Integrity
- Power Distribution Network (PDN)
- Mechanism of Power Noise
- Quantification of Power Noise
- Strategies to Suppress Power Noise

In 2014, the Board of Directors voted to name the Global University in honor of Clayton R. Paul, who dedicated his career to EMC education and was instrumental in setting up the initial Global University. We are pleased to be able to offer Global University once again at the 2015 IEEE International Symposium on Electromagnetic Compatibility and EMC Europe.
EMC/EMI ASPECTS OF POWER ELECTRONICS
Thursday, August 20 | 1400 - 1530
Seminarraum 4

Professor Tsuyoshi Funaki, Osaka University, Japan

Power electronics flexibly convert voltage, current, and frequency of electricity based on the switching operation of a power device. Inductors and capacitors are used to store electrical energy for switching short period and smooth the input and output voltage and current. The higher switching frequency with fast switching of a power device not only makes high controllability of the converter, but also miniaturizes the system with smaller inductance and capacitance.

The basics of power conversion mechanism in power electronics is explained at first with assuming an ideal switching operation and circuit configuration; e.g. DC-DC step up/down converter, DC-AC inverter, and AC-DC converter.

The key component in a power conversion circuit is a power switching device, which also causes EMI noise in its operation. The non-ideal behavior of a power device in switching operation is explained precisely based on the semiconductor physics.

The parasitic inductance and capacitance originates from the geometric structure of component and wirings in actual circuits. The mechanisms to generate EMI noise by the interaction of switching operation in power device and parasitic components in the circuit is addressed.

The switching operation in power conversion circuit intrinsically generates differential mode noise, which is almost suppressed with the properly designed filter circuit. The asymmetry of circuit topology induces the common mode noise, which should be suppressed to avoid noise emission. The mechanisms for common mode noise generation are also explained.

EVALUATION OF MEASUREMENT UNCERTAINTY (MU) IN EMC: BASICS, APPLICATIONS, TRENDS
Thursday, August 20 | 1600 - 1730
Seminarraum 4

Dr. Carlo Carobbi, Università degli Studi di Firenze, Firenze, Italy

Topics covered include terminology and definitions, probability density functions, measurement model, law of propagation of uncertainty, central limit theorem, coverage interval and coverage probability, non-linear models and propagation of distributions.

Examples of MU calculation in EMC testing and calibrations will be addressed as well as how evaluation of MU will change in the near future (the new GUM).

WANT TO LEARN MORE ABOUT THE PROFESSORS OF GLOBAL UNIVERSITY?
Visit www.emc2015.org for complete bios and more details.
<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Against Common Mode Currents on Exposed Cables</td>
<td>B.J.A.M. (Bart) van Leersum1,2, C.C.J. (Jan-Kees) van der Ven1, F.J.K. (Frits) Buesink1 and F.B.J. (Frank) Leferink1, (1)University of Twente, Enschede, Netherlands, (2)Defence Materiel Organisation, Ministry of Defence, The Hague, Netherlands, (3)Imtech Marine Netherlands B.V., Rotterdam, Netherlands, (4)Thales Nederland B.V., Hengelo, Netherlands</td>
</tr>
<tr>
<td>Transfer Characteristic of a MV/LV Transformer in the Frequency Range between 2 kHz and 150 kHz</td>
<td>Stefan Schöttke, Stephan Rademacher, Jan Meyer and Peter Schegner, Institute of Electrical Power Systems and High Voltage Engineering, Technische Universität Dresden, Dresden, Germany</td>
</tr>
<tr>
<td>Impact of Rogowski Sensors on the EMC Performance of MV Power Substations</td>
<td>Christian Suttner1, Stefan Tenbohlen1 and Werner Ebbinghaus2, (1)Institute of Power Transmission and High Voltage Technology, University of Stuttgart, Stuttgart, Germany, (2)ABB AG, Ratingen, Germany</td>
</tr>
<tr>
<td>Detection Method for Overclocking by Intentional Electromagnetic Interference</td>
<td>A. Nagao1, Y. Okugawa1, K. Takaya1, Y. Hayashi2, N. Homma2, and T. Aoki2, (1) NTT Energy and Environment Systems Laboratories, Musashino-shi, Japan, (2) Tohoku University, Sendai, Japan</td>
</tr>
<tr>
<td>Shielding Effectiveness of Screened Rooms with Line Feed-Throughs - a Semi-Analytical Approach</td>
<td>H. Karcoon1, S. Parr1, S. Dickmann1, and R. Rambousky2, (1) Helmut Schmidt Univ. / Univ. of the Federal Armed Forces, Hamburg, Germany, (2) Bundeswehr Research Institute for Protective Technologies, Munster, Germany</td>
</tr>
<tr>
<td>Subminiature Common Mode Filter with Integrated ESD Protection</td>
<td>Jens-Werner1, Jennifer Schütt2, Guido Notermans2, (1) Jade University of Applied Science, Wilhelmshaven, Germany, (2) NXP Semiconductors Germany GmbH, Hamburg, Germany</td>
</tr>
<tr>
<td>Experience on Proficiency Testing in Italy</td>
<td>Carlo Carobbi1, Alessio Bonci1, Marco Cati1, Carlo Panconi1, Michele Borsero1, Giuseppe Vizio1, (1) Department of Information Engineering, Universita’ degli Studi di Firenze, Firenze, Italy, (2) Powersoft S.p.A., Firenze, Italy, (3) Elettroingegneria, Pistoia, Italy, (4) INRIM, Torino, Italy</td>
</tr>
<tr>
<td>Conformal Equivalent Circuit Model and Leapfrog Alternating Direction Implicit Formulation for Fast Simulation of Power Delivery Network</td>
<td>Tadatoshi Sekine1, and Hideki Asai1, (1) Mechanical Engineering, Shizuoka University, Hamamatsu-shi, Japan, (2) Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Hamamatsu-shi, Japan</td>
</tr>
<tr>
<td>Broadband Equivalent-Circuit Model for Non-Uniform Transmission Lines</td>
<td>Andreas Mantzke, Sebastian Südekum, Marco Leone, Otto-von-Guericke University, Magdeburg, Germany</td>
</tr>
<tr>
<td>An Experimental Study of Electrostatic Discharge Immunity Testing for Wearable Devices</td>
<td>Takeshi Ishida1, Shuichi Nitta1, Fengchao Xiao2, Yoshio Kami3, Osamu Fujiwara4, (1) Engineering dept., Noise Laboratory Co., LTD, Sagamihara, Japan, (2) Comunication Engineering and Informations, University of Electro-Communications, Tokyo, Japan, (3) Center of Industrial and Governmental Relation, University of Electro-Communications, Tokyo, Japan, (4) Nagoya Institute of Technology, Nagoya, Japan</td>
</tr>
<tr>
<td>High Frequency Models of Toroidal Inductors for EMC Filtering</td>
<td>Felix Traub, Stanislav Skibin and Bernhard Wunsch, ABB Switzerland AG, Baden-Dättwil, Switzerland</td>
</tr>
<tr>
<td>Challenges of Time Domain Measurement of Field-field Correlation for Complex PCBs</td>
<td>Chris Smart1, Dave Thomas1, Hayan Nasser1, Mohd Baharuddin1, Gabriele Gradoni1, Gregor Tanner2 and Stephen Creagh2, (1) Electrical Systems and Optics, University of Nottingham, Nottingham, United Kingdom, (2) School of Mathematical Sciences, The University of Nottingham, Nottingham, United Kingdom</td>
</tr>
<tr>
<td>Experimental Investigations on the Pulsed Power Switch of a HIRA based UWB System</td>
<td>Vijay Bhosale1, Joy Thomas M.1, D.C. Pande1 and Joseph Vas2, (1) DRDO, LRDE, Bangalore, India, (2) Electrical Engineering, Indian Institute of Science, Bangalore, India, (3) EMI-EMC, LRDE, Bangalore, India</td>
</tr>
</tbody>
</table>
EMC Europe 2016
International Symposium and Exhibition on Electromagnetic Compatibility
September 5 - 9, 2016, Wrocław, Poland

Organized by:
Wrocław University of Technology

Technically co-sponsored by:

Important dates:
Submission of preliminary papers: February 15, 2016
Submission of proposals for workshops, tutorials, special sessions and short courses: March 15, 2016
Acceptance notification: April 18, 2016
Submission of final papers and materials for workshops and tutorials: May 16, 2016
Reduced registration fee: May 16, 2016

Further information: www.emceurope.org/2016
www.emceurope.eu/2016
BEST STUDENT PAPER AWARD FINALISTS

<table>
<thead>
<tr>
<th>PAPER TITLE</th>
<th>ID</th>
<th>AUTHORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Evaluation of the Independent Stirrer Positions in the Dresden Reverberation Chambers based on Field Homogeneity within a Defined Test Volume</td>
<td>4464</td>
<td>Stephan Pfennig, Chair of Electromagnetic Theory and Compatibility, Technical University Dresden, Dresden, Germany</td>
</tr>
<tr>
<td>Influence of Parasitic Elements on Radiated Emissions of a Boost Converter</td>
<td>4955</td>
<td>Lars Middelstaedt¹, Andreas Lindemann¹, Moawia Al-Hamid², Ralf Vick², (1)Chair for Power Electronics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany, (2)Chair for Electromagnetic Compatibility, Otto-von-Guericke University Magdeburg, Magdeburg, Germany</td>
</tr>
<tr>
<td>Conducted Emission Characteristics of CCM Boost Converter with SiC schottky Barrier Diode</td>
<td>5156</td>
<td>Takaaki Ibuchi and Tsuyoshi Funaki, Osaka University, Suita, Osaka, Japan</td>
</tr>
<tr>
<td>Antenna Factor Determination of a Shielded Standard Loop Antenna</td>
<td>5374</td>
<td>Nino Richter¹, Alexander Küllmer², Achim Enders², Axel Junge¹, (1)EMC Section, European Space Agency -ESTEC, Noordwijk, Netherlands, (2)Institute for Electromagnetic Compatibility, TU Braunschweig, Braunschweig, Germany</td>
</tr>
<tr>
<td>Effect of Pulsed Interference on an ASK Receiver</td>
<td>5406</td>
<td>Stefan van De Beek¹, Silvo Jeunink¹ and Frank Leferink¹,², (1)University of Twente, Enschede, The Netherlands, (2)Thales Nederland B.V., Hengelo, The Netherlands</td>
</tr>
<tr>
<td>Extension of the Emission Measurements for Alternative Test Methods above 1 GHz for Unintentional Electromagnetic Radiators</td>
<td>5519</td>
<td>Benjamin Menßen, David Hamann and Heyno Garbe, Institute of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, Hannover, Germany</td>
</tr>
<tr>
<td>Wideband Characterization and Modeling of Coupled Inductors under Temperature Variations</td>
<td>5534</td>
<td>Fahim Hami¹,², Habib Boulzazen² and Moncef Kadi¹, (1)VeDeCoM, Versailles, France, (2)IRSEEEM/ESIGELEC, Saint Etienne du Rouvray, France, (3)Electronics and Systems, IRSEEEM/ESIGELEC, Rouen, France</td>
</tr>
<tr>
<td>Electromagnetic Shielding Properties of Nano Carbon Filled Silicone Rubber Composites</td>
<td>5597</td>
<td>Joseph Vas and Joy Thomas, Indian Institute of Science, Bangalore, India</td>
</tr>
<tr>
<td>Wide Ban Measurements in Time-Domain with Current and Voltage Probes for Power Losses Evaluation and EMC Measurement on Power Converters</td>
<td>5700</td>
<td>Kevin Loudiere¹, Arnaud Bréard¹, Christian Voltaire¹, François Costa², Houmam Moussa¹ and Régis Meuret¹, (1)Laboratoire Ampère, Ecully, France, (2)Université Paris-Est SATIE-CNRS, Cachan, France, (3)Labinal Power Systems, Réau, France</td>
</tr>
</tbody>
</table>
TECHNICAL COMMITTEES

Technical Committee (TC) Meetings play an important role in the overall success of the EMC Society by promoting activities in their fields and providing expert knowledge and assistance to generate and review technical papers, organize and operate sessions at symposia, generate and develop standards, and evaluate the state of the art in EMC science. All meetings are open to everyone; join them for breakfast, a break, lunch, or dinner. Listen to the discussions and learn what they are working on. Join your peers who volunteer to make EMC better.

TECHNICAL COMMITTEE 1 | EMC MANAGEMENT
Tuesday, August 18 | 0730 - 0930 | Seminarraum 5
This committee is concerned with the development and dissemination of Best Practices and Methodologies for the successful leadership, supervision and guidance of EMC related activities. These Best Practices and Methodologies shall be structured so as to provide assistance to all managers, and engineers. Appropriate and convenient tools shall serve as a foundation to these Best Practices and Methodologies.

TECHNICAL COMMITTEE 2 | EMC MEASUREMENTS
Tuesday, August 18 | 0700 - 0830 | Seminarraum 1
This committee is concerned with the measurement and instrumentation requirements in EMC standards and procedures and how they are interpreted. Also concerned with the adequacy of measurement procedures and measurement instrumentation specifications for radiated and conducted emission and susceptibility tests and the rationale for performance limits for these tests.

TECHNICAL COMMITTEE 3 | ELECTROMAGNETIC ENVIRONMENT
This committee is to encourage research in the following areas: electromagnetic environment (EME), development of standards for EME measurement and characterization, natural and man-made sources of electromagnetic environment that comprise this environment, effects of noise (unwanted portions of EME) on systems performance, effects of international civil and military standards intended to control man-made intentional and unintentional emissions of electromagnetic energy.

TECHNICAL COMMITTEE 4 | EMI CONTROL
Wednesday, August 19 | 1200 - 1400 | Seminarraum 4
This committee is concerned with design, analysis, and modeling techniques useful in suppressing interference or eliminating it at its source. Bonding, grounding, shielding, and filtering are within the jurisdiction of this committee. These activities span efforts at the system, subsystem, and unit levels.

TECHNICAL COMMITTEE 5 | HIGH POWER ELECTROMAGNETICS
Wednesday, August 19 | 1200 - 1330 | Seminarraum 2
This committee is concerned with the effects and protection methods for electronic equipment and systems for all types of high power electromagnetic environments. These environments include electromagnetic pulse (EMP), intentional EMI environments (i.e. narrowband and wideband), lightning electromagnetic currents and fields, electrostatic discharge and geomagnetic storms. In addition this committee deals with the commercial data security issue through electromagnetic information leakage activities. Interactions with subsystems, systems and platforms are included.

TECHNICAL COMMITTEE 6 | SPECTRUM MANAGEMENT
Tuesday, August 18 | 1200 - 1330 | Seminarraum 5
This committee is concerned with the analysis, design, and measurement techniques for intentional RF transmitting and receiving equipment to prevent interference and promote efficient spectrum use through technology and operational based approaches, such as software design, dynamic spectral allocation, waveform control, as well as frequency coordination and management procedures.
Where Baroque meets High-Tech...

TECHNICAL COMMITTEE 7 | LOW FREQUENCY EMC
Tuesday, August 18 | 1200 - 1330 | Seminarraum 6
This committee is concerned with low-frequency EMC including Power Quality in electric power systems. The committee is focusing on application of fundamental EMC concepts also to low frequency conducted disturbances. EMC in power systems is expected to be increasingly important. This is due to increased use of electronics in renewables, electric vehicles, energy efficient technologies and Smart Grid applications.

TECHNICAL COMMITTEE 9 | COMPUTATIONAL ELECTROMAGNETICS
Tuesday, August 18 | 1200 - 1330 | Seminarraum 1
This committee is concerned with broad aspects of Applied Computational Electromagnetic techniques which can be used to model electromagnetic interaction phenomena in circuits, devices, and systems. The primary focus is with the identification of the modeling methods that can be applied to interference (EMC) phenomena, their validation and delineating the practical limits of their applicability. Included are low and high frequency spectral-domain techniques and time-domain methods.

TECHNICAL COMMITTEE 10 | SIGNAL AND POWER INTEGRITY
Wednesday, August 19 | 1200 - 1300 | Seminarraum 1
This committee is concerned with the design, analysis, simulation, modeling and measurement techniques useful in maintaining the quality of electrical signals. These activities encompass all aspects of signal integrity from the integrated circuit level to the system level.

TECHNICAL COMMITTEE 11 | NANOTECHNOLOGY
Thursday, August 20 | 1200 - 1300 | Seminarraum 6
The newest technical topic area for the EMC Society, the topics include carbon nanotubes, composite materials, and other measurements, design, and analysis applications.

SPECIAL COMMITTEE 4 | EMC FOR EMERGING WIRELESS TECHNOLOGIES
Tuesday, August 18 | 0800 - 0900 | Seminarraum 6
This committee is concerned with the design, analysis, modeling and measurement for interference control and mitigation in emerging wireless products. The committee encourages research including but not limited to the following areas: EMC-based system architecture design and system planning, strategic EMC performance budgeting and distribution, new system interface requirements and new system integration methods, intra-system coupling path analysis, modeling and validation, new EMC evaluation/measurement methods and standards for components/devices, innovative component designs with integrated EMC functionalities, new EMC material requirements, applications and evaluation methods, and interdisciplinary issues involving EMC, audio, mechanical, and thermal designs.

SPECIAL COMMITTEE 6 | UNMANNED AIRCRAFT SYSTEMS EMC
Monday, August 17 | 1200 - 1330 | Seminarraum 3
This committee is concerned with design, testing, modeling/simulation required for system level EMC for unmanned aircraft systems that will be engaged in all-weather autonomous single and cooperative flight. Special emphasis is on spectrum management on intra and inter-system interactions (platform integration), mission specific data security and bandwidth requirements, and robust performance in the presence of high intensity radiated fields (HIRF). Engagement in the development of standards will be a key role of this special committee.

SPECIAL COMMITTEE 1 | SMART GRID
Monday, August 17 | 1745 - 1830 | Seminarraum 2
This special committee is concerned with coordination of the EMC Society activity on providing EMC principles for those organizations and associated documentation and specifications that address the efficient use of the AC power grid including the control of power entering and in some cases exiting a house or building.
Technical Program

<table>
<thead>
<tr>
<th>MEETING NAME</th>
<th>START TIME</th>
<th>END TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday, August 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic Planning Committee Meeting</td>
<td>1600</td>
<td>1800</td>
<td>Seminarraum 4</td>
</tr>
<tr>
<td>Board of Directors Executive Committee (ExCom) Meeting</td>
<td>1800</td>
<td>2200</td>
<td>Seminarraum 4</td>
</tr>
<tr>
<td>Sunday, August 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Directors (BoD) Meeting</td>
<td>0830</td>
<td>1700</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>IEC Joint Task Force TEM</td>
<td>0900</td>
<td>1700</td>
<td>Seminarraum 4</td>
</tr>
<tr>
<td>dB Society Picnic “BEAUTIFUL BAROQUE”</td>
<td>1830</td>
<td>2130</td>
<td>PulverTurm</td>
</tr>
<tr>
<td>Monday, August 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Advisory Committee (TAC) Meeting #1</td>
<td>0700</td>
<td>0930</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>Standards Development & Education Committee (SDECom) Meeting</td>
<td>0800</td>
<td>1100</td>
<td>Seminarraum 2</td>
</tr>
<tr>
<td>Standards Advisory & Coordination Committee (SACCom) Meeting</td>
<td>1100</td>
<td>1200</td>
<td>Seminarraum 2</td>
</tr>
<tr>
<td>SC 6: Unmanned Aircraft Systems EMC</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>IEEE Std P1302 - On Board Shielding, Planar Materials, Forensic Pouches</td>
<td>1400</td>
<td>1730</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>SC 1: Special Committee on Smart Grid</td>
<td>1745</td>
<td>1830</td>
<td>Seminarraum 2</td>
</tr>
<tr>
<td>EMCS Chapter Chair Dinner</td>
<td>1730</td>
<td>2030</td>
<td>Seminarraum 6</td>
</tr>
<tr>
<td>International Steering Committee (ISC) EMC Europe Meeting #1</td>
<td>1800</td>
<td>2000</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>International Steering Committee (ISC) EMC Europe Dinner</td>
<td>2000</td>
<td>2300</td>
<td>Restaurant</td>
</tr>
<tr>
<td>Tuesday, August 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC 2: EMC Measurements</td>
<td>0700</td>
<td>0830</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>TC 1: EMC Management</td>
<td>0730</td>
<td>0930</td>
<td>Seminarraum 5</td>
</tr>
<tr>
<td>SC 4: EMC for Emerging Wireless Technologies</td>
<td>0800</td>
<td>0900</td>
<td>Seminarraum 6</td>
</tr>
<tr>
<td>TC 6: Spectrum Engineering</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 5</td>
</tr>
<tr>
<td>TC 7: Low Frequency EMC</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 6</td>
</tr>
<tr>
<td>TC 9: Computational Electromagnetics</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>TECM Editorial Board Meeting</td>
<td>1200</td>
<td>1400</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>IEEE Validation and Risk Management Std</td>
<td>1400</td>
<td>1730</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>Wednesday, August 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education and Student Activities Committee (ESAC) Meeting</td>
<td>0700</td>
<td>0900</td>
<td>Seminarraum 4</td>
</tr>
<tr>
<td>Working Group DKE AK767.0.5 Meeting</td>
<td>0900</td>
<td>1700</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>Senior Member Elevation</td>
<td>1000</td>
<td>1600</td>
<td>Seminarraum 7</td>
</tr>
<tr>
<td>TC 4: Electromagnetic Interference Control</td>
<td>1200</td>
<td>1400</td>
<td>Seminarraum 4</td>
</tr>
</tbody>
</table>
Wednesday, August 19
continued

<table>
<thead>
<tr>
<th>MEETING NAME</th>
<th>START TIME</th>
<th>END TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 5: High Power Electromagnetics</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 2</td>
</tr>
<tr>
<td>TC 10: Signal and Power Integrity</td>
<td>1200</td>
<td>1300</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>EMC Young Professionals Luncheon</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 6</td>
</tr>
</tbody>
</table>

Thursday, August 20

<table>
<thead>
<tr>
<th>MEETING NAME</th>
<th>START TIME</th>
<th>END TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibitors Breakfast</td>
<td>0830</td>
<td>0945</td>
<td>Restaurant ICD</td>
</tr>
<tr>
<td>Subcommittee DKE UK 767.4 Meeting</td>
<td>0900</td>
<td>1700</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>Past President Luncheon</td>
<td>1130</td>
<td>1330</td>
<td>Lounge/Blue Bar</td>
</tr>
<tr>
<td>TC 11: Nanotechnology and Advanced Materials</td>
<td>1200</td>
<td>1300</td>
<td>Seminarraum 6</td>
</tr>
<tr>
<td>EMCS Chapter Chair Training</td>
<td>1200</td>
<td>1400</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>Women in Compliance Lunch</td>
<td>1200</td>
<td>1330</td>
<td>Seminarraum 2</td>
</tr>
<tr>
<td>International Steering Committee (ISC) EMC Europe Meeting #2</td>
<td>1200</td>
<td>1330</td>
<td>Restaurant</td>
</tr>
<tr>
<td>IEEE Std 1128 – Absorber Evaluation - Revision</td>
<td>1400</td>
<td>1500</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>Standards Development & Education Committee (SDECom) Meeting</td>
<td>1500</td>
<td>1730</td>
<td>Seminarraum 2</td>
</tr>
<tr>
<td>Board of Directors (BoD) Meeting</td>
<td>1800</td>
<td>2200</td>
<td>Seminarraum 1</td>
</tr>
</tbody>
</table>

Friday, August 21

<table>
<thead>
<tr>
<th>MEETING NAME</th>
<th>START TIME</th>
<th>END TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Advisory Committee (TAC) Meeting #2</td>
<td>0700</td>
<td>0930</td>
<td>Seminarraum 1</td>
</tr>
<tr>
<td>Subcommittee DKE UK 767.4 Meeting</td>
<td>0900</td>
<td>1600</td>
<td>Seminarraum 3</td>
</tr>
<tr>
<td>2015 EMC Symposium Wrap Up Session</td>
<td>1430</td>
<td>1630</td>
<td>Seminarraum 1</td>
</tr>
</tbody>
</table>

Saturday, August 22

<table>
<thead>
<tr>
<th>MEETING NAME</th>
<th>START TIME</th>
<th>END TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTF Reverberation Chamber</td>
<td>0900</td>
<td>1700</td>
<td>Seminarraum 1</td>
</tr>
</tbody>
</table>

OTHER SYMPOSIUM EVENTS

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Start Time</th>
<th>End Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, August 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tote Bag Stuffing</td>
<td>1200</td>
<td>1400</td>
<td>Registration Counter</td>
</tr>
</tbody>
</table>

Monday, August 17 through Friday, August 21

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Start Time</th>
<th>End Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speakers Breakfast Coffee</td>
<td>0730</td>
<td>0815</td>
<td>Restaurant</td>
</tr>
<tr>
<td>Speaker Ready Room (Media Check)</td>
<td>0700</td>
<td>1700</td>
<td>Konferenz 7</td>
</tr>
<tr>
<td>Companion Hospitality</td>
<td></td>
<td></td>
<td>Büroraum Saal Ebene</td>
</tr>
</tbody>
</table>

Monday, August 17 through Thursday, August 20

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Start Time</th>
<th>End Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clayton R. Paul Global University</td>
<td>1400</td>
<td>1730</td>
<td>Seminarraum 4</td>
</tr>
</tbody>
</table>
SAVE THE DATE

EMC 2016
25 - 29 July 2016
Ottawa, Canada

2016 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC 2016)
COMPATIBILITY IN CANADA’S CAPITAL

25 - 29 JULY 2016 • OTTAWA, CANADA

BACK FOR 2016!
THE IEEE INTERNATIONAL CONFERENCE ON
SIGNAL AND POWER INTEGRITY (SIPI-2016)

The 2016 IEEE International Symposium on Electromagnetic Compatibility, sponsored by the IEEE EMC Society, featuring an embedded Signal Integrity and Power Integrity conference, is the must-attend event for EMC engineers of all levels and specialties.

Join us in Ottawa, Canada as we bring compatibility to the Capital in the region known for technological enterprise and government research making this an ideal location to discuss, exchange, and collaborate with the EMC and SI/PI Communities.

BENEFITS AND FEATURES:

• Learn EMC, Signal Integrity and Power Integrity techniques
• Three days of expert technical papers
• Two full days of practical EMC & SI/PI workshops and tutorials
• Experiments and demonstrations of fundamental and advanced topics
• Exhibits! New Technologies, Instrumentation and Solutions
• Social networking, connecting and unique Ottawa culture

www.emc2016.emcss.org
The General Chair for EMC 2016, Kris Hatashita, and the General Vice Chairs, Wahab Almuhtadi and Qiubo Ye invite EMC and SI professionals, engineers, researchers, and leaders from industry and academia to convene in The Shaw Centre in Ottawa, Canada with hundreds of international experts in the field to learn, exchange ideas and engage in professional development.

LEADING EDGE INFO:
- EMC Measurements
- EMI Control
- EMC Management
- Low Frequency EMC
- Computational Electromagnetics
- High Power Electromagnetics
- Electromagnetic Environments
- Military EMC - Special Sessions
- Theme Topic I – Signal & Power Integrity
 - High-speed channel characterization and modeling
 - Signal/power integrity co-design and co-simulation
 - 3D IC and 3D packaging
 - Measurement techniques
 - Jitter, equalization, BER
- Theme Topic II – EMC for Emerging Technologies
 - Wireless EMC
 - Radio-Frequency Interference
 - Smart Grid EMC
 - Nano-Materials and Silicon Photonics
 - Unmanned Aircraft Systems EMC
- Theme Topic III – Space EMC
 - Launch vehicles
 - On-orbit platforms
 - Systems and Networks
 - Design and Mitigation for the Space Environment

LOCAL ATTRACTIONS
- Tours and walks on the grounds of historic Parliament Hill
- An extensive collection of art at The National Gallery of Canada
- Live theatre and music at the National Arts Centre
- Exhibits and special shows at The National Museums of History, Nature, War, Aviation and Space
- An opportunity to travel on The Rideau Canal - A UNESCO World Heritage Site
- World-class shopping, dining and night life throughout the city
- Over 300 kilometres of interconnected bike and hiking trails accessible from your hotel front door
VISIT THE EXHIBIT HALL

Walk the show floor and learn about organizations in the EMC community.

Meet with exhibitors to discuss new technologies, services, and solutions.

Discover and compare products and services from multiple vendors in a single location.

Embrace the stunning views of our riverside exhibition area as you browse and connect.

PARTICIPATING EXHIBITORS

- Advanced Test Equipment Rentals 55
- Albatross Projects GmbH .. 61, 62, 63, 64
- Altair Engineering GmbH ... 50
- Amber Precision Instruments, Inc 25
- ANDRO Computational Solutions, LLC 102
- ANSI ASC C 63 .. 237
- ANSYS Germany GmbH ... 56
- APEMC 2016 .. 243
- AR ... 38, 39, 42, 43, 44, 45, 46, 47
- bedea Berkenhoff & Drebes GmbH 227
- Com-Power Corporation ... 110
- Comsol Multiphysics GmbH 58
- COMTEST ... 116, 118
- CSA Group Bayern GmbH 40, 41
PARTICIPATING EXHIBITORS

CST-Computer Simulation Technology AG ... 34, 35, 36, 37
Denkenseiki Research Co., Ltd. ... 23
dhs ELMEA Tools GmbH ... 100
Dr. Brockhaus Messtechnik GmbH & Co. KG 230
EM TEST GmbH ... 27
EMC Europe 2016, Wroclaw ... 252
EMC PARTNER AG .. 69, 71
EMCO Elektronik GmbH ... 109
EMCoS Ltd. ... 60
EMCS History Committee ... 255
EMCS Standards .. 254
EMSCAN real-time results .. 77
enprobe GmbH .. 26
EspressoEngineering.tv .. 261
ETS-Lindgren GmbH .. 85, 86, 87, 88
Fischer Custom Communications, Inc. 96, 97, 98, 99
Frankonia EMC Test-Systems GmbH 18, 20
Haefely .. 111
Haefely Hipotronics. ... 72
Huawei Technologies Sweden AB ... 30, 32
IEEE Antennas and Propagation Society 259
IEEE EMC 2016 Ottawa .. 253
IEEE EMC Society ... 256
IEEE Microwave Theory and Techniques Society 221
IEEE-HKN ... 260
IET ... 220
In Compliance Magazine ... 57, 59
iNARTE / Exemplar Global ... 257
Innco systems GmbH .. 73
Interference Technology .. 244
Keysight Technologies Deutschland GmbH 19
Langer EMV-Technik GmbH ... 28, 29
Liberty Calibration Corps.. 70
LUMILOOP GmbH ... 229
maturo GmbH ... 228
Microwave Vision ... 42
Montena technology SA .. 22
Mooser EMC Technik GmbH .. 94
MOSSBAY EDA/IBM ... 222
MRC Gigacomp GmbH & Co. KG .. 51
Nexio .. 107
Nolato Silikoneteknik AB ... 48
PMM-Narda .. 120, 122
Prana ... 105
PRO NOVA Elektronik GmbH .. 76
Rohde & Schwarz Vertriebs GmbH 65, 66
Safety & EMC Magazine .. 258
Schlegel Electronic Materials ... 74
Schmid & Partner Engineering AG ... 31, 33
Sekels GmbH .. 101
Spira Manufacturing Corp .. 78
Telemeter Electronic GmbH .. 223
TMD Technologies Ltd. .. 49
VCCI Council .. 75
Vectawave Technology Ltd. ... 53
Würth Elektronik eiSos GmbH & Co. KG 81, 82, 83, 84

EXHIBIT HOURS

Tuesday, 18 Aug .. 0900 - 1730
Wednesday, 19 Aug .. 0900 - 1730
Thursday, 20 Aug ... 1000 - 1700
Emission Measurements (New 2014 Edition of ANSI C63.4) and Time Domain (TD) Applications (draft ANSI C63.25)

(Visit www.c63.org for more information) This combined workshop is presented in two parts during one full day. Topics covered include: (1) review of the new 2014 edition of ANSI C63.4 and (2) preview of the draft ANSI C63.25 site validation document and application of Time Domain (TD) measurements for test site validation and antenna calibration. These workshops are designed to increase your understanding of the new C63.4 standard and the TD approach. For the C63.4 workshop, there will be an analysis of the test site validation including using the CISPR SVSWR method above 1 GHz, requirements for hybrid antenna use, test setup requirements and many other changes from that of the previous edition in 2009. Application of time domain methods to validating test sites will also be presented along with a demonstration using a Keysight PNA microwave network analyzer. As time permits, attendees will get a chance to apply what they learned via problem solving and/or participating in the real-time time domain demonstration.

In the C63.4 workshop, you will learn changes between the 2009 and 2014 editions in these areas:
- RF emission measurement procedures above 1 GHz
- Regulatory implications
- Test facility changes and hybrid antenna validation
- Handling tablet PCs, rack-mounted equipment and visual displays
- The basic information contained in the CISPR 32 (multimedia, IT and receivers) testing approach

In the TD Domain (C63.25 draft) workshop, you will learn:
- Application for site validation
- Application for antenna calibration
- Updates on the draft standard

Support material provided
- A complete lecture flash drive
- Copies of the draft or published standards. Fee does NOT include continental breakfast, lunch, breaks, and completion certificate. Fee does NOT include copies of the draft or published standards. Fee does NOT include hotel accommodations. See www.emc2015.org for hotel and symposium information.

Date and Location
August 14, 2015
Technical University (TU) - Dresden
Address and room number to be provided upon registration.

Fee Includes
Transportation to/from the Maritim Hotel (host hotel for IEEE EMC Symposium) and TU-Dresden, complete lecture flash drive, continental breakfast, lunch, breaks, and completion certificate. Fee does NOT include hotel accommodations. See www.emc2015.org for hotel and symposium information.

Agenda
ANSI C63.4: Half-day August 14
8:00 am Registration
Class: 8:30 am to 12:00 pm
Time Domain: Half-day August 14
Registration: 12:00 pm
Class: 1:00 pm to 5:00 pm

Registrations Form
Telephone: 425-868-2558
Ms./Mr.__
Company__
Email__
City________________________State_____Zip____________
Daytime Phone___________________Fax_________________

C63.4 Emissions workshop only – August 14 (morning)
By July 27*: $250 USD
C63 & S/C Members (by July 27) $200 USD

Time Domain workshop only – August 14 (afternoon)
By July 27*: $250 USD
C63 & S/C Members (by July 27) $200 USD

Both workshops – All day August 14
By July 27*: $500 USD
C63 & S/C Members (by July 27) $400 USD
*Add $150 if after July 27 or at the door**
for either workshop or both workshops
Total USD $__________________

Who Should Attend
Those responsible for determining compliance with FCC Rules and Regulations (and CISPR 22/32), including:
- Product managers and developers
- EMC engineers and test technicians
- Regulatory compliance managers
- Test instrumentation developers
- Those using and calibrating antennas in making radiated emission compliance measurements
- Calibration technicians
- Calibration and measurement accreditation bodies
- Lab quality assessors
- Test instrumentation and chamber manufacturers

Expert Instructors
Workshops feature leading industry experts and ANSI C63 members, including
Don Heirman, Workshop Director,
(Don HEIRMAN Consultants), and
Zhong Chen (ETS-Lindgren).

Contact: Janet O’Neil
j.n.oneil@ieee.org
Payment Options:
Payment Options:
ON LINE: To pay on line, send an email to j.n.oneil@ieee.org along with a scan of this completed registration form. An invoice will be returned to you via email which you can use to pay on line with your credit card.

CHECK: Make check payable to U.S. EMC Standards Corporation in U.S. dollars drawn on a U.S. bank. Mail to:
Dan Hoolihan
P.O. Box 367
Lindstrom, MN 55045
Please do not mail after July 15.

Please visit www.c63.org/workshops.htm for more information on ANSI ASC C63, these workshops, and speaker biographies.

NOTE: You are not registered until you receive confirmation.

**With prior telephone confirmation only.

The organizing committee reserves the right to substitute speakers, modify the program (or lecture notes), restrict attendance or to cancel the workshop(s). In the event the workshop(s) is/are canceled, registration fees will be refunded. No refunds will be made to individuals who cancel after July 10. Substitutions are allowed. Workshops without a minimum of six attendees signed up by 27 July 2015 will be cancelled and registration fees returned. It is suggested that you book refundable travel arrangements as appropriate if workshop(s) is/are cancelled.
THANK YOU!

The Committee for the EMC 2015 Joint IEEE International Symposium on Electromagnetic Compatibility and EMC Europe extends our sincere thanks to our patrons and advertisers for their valued support.
Who says you can't have it all?

And with next-day, on-time delivery

You can have it all when it comes to EMC/EMI testing. A.H. Systems is proud to bring you exciting new products, and many reliable favorites for your evaluation and compliance applications. Our antennas are unique and distinctive with broadband frequency ranges between 20 Hz up to 40 GHz. This enables us to specialize in various sales, rentals and, re-calibrations of test Antennas throughout the world. To view our products and get quick answers to your questions, access our comprehensive online catalog. Search for various information about product descriptions, typical AF plots, VSWR, power handling capabilities and links to product data sheets. Or simply request a catalog be sent to you. Not only have we been developing EMI Antennas for over 30 years, we also have organized worldwide sales representation. You can find your local knowledgeable representative in over 27 countries via our website. For quality products, excellent service and support with next-day, on-time delivery.

Antennas...

And Kits too.

Innovation | Quality | Performance

Phone: (818)998-0223 Fax: (818)996-6892
http://www.AHSystems.com

A.H. Systems
Your Application is Our Challenge

Albatross Projects is one of the leading global manufacturers of anechoic chambers and shielded rooms for various applications in EMC, antenna testing and high-frequency technology. The world is our home. We match your needs with local subsidiaries and people who speak your language. Our expertise lies in the development, design and realization of test environments to verify the electromagnetic compatibility of your products according to national and international requirements.

Albatross Projects’ successful solutions are based on the vast technical skill sets of our project teams. Our global strength is managing your project with all interfaces. We work by your side to meet the needs of your chamber project in a timely fashion. This is supported by the highest potential of experience, expertise, innovation and understanding of your demand.

Tell us what you need – we’ll find the solution.
Excellent conditions for excellent results!

Albatross Projects GmbH
Daimlerstrasse 17 · 89564 Nattheim, Germany · Phone +49 7321 730-500 · info@albatross-projects.com · www.albatross-projects.com
Your Total EMC Source for Over 45 Years

1 to 2.5 GHz Solid State Amplifiers
The solid state alternative to TWTA's. Improved harmonics, lower noise, superior linearity and reliability and none featuring 3,000 watts CW.

16,000 Watts of Pure Power
The new 16000A225 amp. It covers 10 MHz to 225 MHz and delivers 16,000 watts of power and we're not stopping there. Call us for power levels up to 50,000 watts.

"W" Series Amplifiers
The most advanced, highest power and innovative RF Solid State amplifiers in the world. Now providing up to 4000 Watts CW from 80 to 1000 MHz.

Intelligent Test Systems
All-in-one test systems for any EMC application, DC to 50 GHz. Our systems make testing more efficient, accurate, and affordable.

Redunit Antennas
Best Elliptic Antennas
We bent the rules and advanced the science of log periodic antennas. Smaller, lighter, and more compact to fit in smaller chambers.

0.7 to 18 GHz Amplifiers
Solid State Class A CW Amplifiers up to 300 Watts from 0.7 to 18 GHz and 40 Watts from 4 to 8 GHz. Now you don't have to settle for TWTA's.

Field Analyzer
The new series of sensor powered electric field analyzers have an extremely high sample rate and can precisely measure pulsed electric fields in the microsecond range.

www.arworld.us/EMCsource
Contact us at ad@ARWorld.US
Come See Us at EMC Dresden
International Congress Center Dresden (ICC), Dresden, Germany, August 18-20, 2015
Wide Variety of Products for Your EMC Testing Needs

Active Loop Antenna Telecom Analyzer Microwave Biconical Antennas Active and Passive Horn Antennas

Power Amplifiers Preamplifiers LISNs CDNs

Current Probes Absorbing Clamps High Power Horns

Comb Generators up to 40 GHz Near Field Probes Antenna Kits

Come visit us at Booth 110

Save Time and Money by Shopping From A Single Source

Com-power offers a wide variety of products for compliance testing. We provide quick delivery, the best warranty in our industry, and very reasonable prices.

OTHER PRODUCTS INCLUDE:
Spectrum Analyzers • ISNs • Test Systems • Turntables • Masts & Tripods • Telecom Test Systems

Competitive Pricing
Fast Delivery
Three-year Warranty

Within USA: 855-364-2362 (855-EMI-2-EMC)
sales@com-power.com | www.com-power.com
19121 El Toro Road, Silverado, California 92676 • tel 949.459.9600 • fax 949.635.0329 • sales@com-power.com
Make the Connection

Find the simple way through complex EM systems with CST STUDIO SUITE

Components don’t exist in electromagnetic isolation. They influence their neighbors’ performance. They are affected by the enclosure or structure around them. They are susceptible to outside influences. With System Assembly and Modeling, CST STUDIO SUITE helps optimize component and system performance.

Involved in EMC/EMI analysis? You can read about how CST technology is used for EMC/EMI analysis at www.cst.com/emc.

If you’re more interested in microwave components or signal integrity analysis, we’ve a wide range of worked application examples live on our website at www.cst.com/apps.

Get the big picture of what’s really going on. Ensure your product and components perform in the toughest of environments.

Choose CST STUDIO SUITE – Complete Technology for 3D EM.

Come visit CST at booths #34–37.
EMCoS Simulation Tools

- Wide range of EMC problems
- Complex cable structures
- Low frequency analysis of magnetic structures
- Powerful antenna calculations and special tools for glass antennas
- System simulation
- PCB solutions
- Effective computational solvers and parallel version
- Free 45 day evaluation

Simulation has never been so easy

www.emcos.com
E-mail: info@emcos.com
Be inspired. Be creative.

Ignite ∞ Creativity

- **See more in the dark**
 Superb low light performance with 13MP rear camera with OIS, RGBW sensor and ISP

- **Paint with light**
 Light painting made easy with instant preview

- **Designed to inspire**
 Sleek and bold metallic body with 5.2” FHD screen

HUAWEI P8

consumer.huawei.com
All things in compliance.

In Compliance is a leading source for news, information, and resources for electrical engineering professionals.

www.incompliancemag.com
More than just a magazine. A wealth of information.
Providing the Greatest Choice in EMC Turnkey Solutions

- 3m Compact, 3m, 5m & 10m EMC Chamber Solutions
- Emissions & Immunity Testing
- Shielded Rooms & RF Filter for EMP & EMC Applications
- Mode Stir Chambers
- High Performance Absorber Materials
- Proven in NATO tested EMPP sites
- Complete with electrical filters and waveguides
- Meet the MIL ST 188-125 requirements

Contact your local sales representative for more information
www.mvg-world.com
sales@microwavevision.com
Or call 0044 (0)1942 286190
We generate your high voltage pulse for
→ MIL-STD 461
→ MIL-STD 188-125
→ MIL-STD 331C

measure your high frequency transients
→ NEMP
→ UWB
→ HPEM

deliver your test equipment
→ New site setups
→ Refurbishment of existing installations in compliance with the latest MIL Standard versions
→ Maintenance and training

montena technology sa
Switzerland T +41 26 411 84 84
www.montena.com
Our expertise takes you to the top.
EMC solutions from Rohde & Schwarz.

We provide everything you need for development, precompliance and compliance measurements to ensure successful EMC certification.
- Exceptionally fast EMI test receivers
- Efficient diagnostic tools for detecting EMI
- EMC software packages for interactive and fully automatic measurements
- Wide range of accessories for performing EMI measurements
- Compact and modular broadband amplifiers
- RF shielded chambers
- Complete EMC test systems

For more information, visit:
www.rohde-schwarz.com/ad/emc

Visit us at the CCD in Dresden, booth 40+41
图1 传导发射测试曲线（PK检波器）

图5 Test IC 测试布线图

3.2 Test IC 测试电路布局

图5所示的测试电路布局，具有以下特点：
- 测试电路布局简单，易于理解。
- 测试电路具有良好的可扩展性。
- 测试电路使用了最新的技术。
- 测试电路的性能稳定，可靠性高。

图例：
- PK检波器：用于检测电磁干扰。
- 传导发射测试：用于检测电路的电磁兼容性。
- Test IC：测试用的集成电路。
Würth Elektronik eiSos
Electronic & Electromechanical Components

- Small quantities: We can deliver upon request our technology leading components direct from stock to assist with pre-production runs
- Worldwide technical sales force: We are present worldwide to support you in finding solutions
- All catalogue parts ex stock
- Reference designs with all major IC manufacturer
- Design kits with life time refill
- Samples free of charge
- Free Design Software

Welcome to EMC 2015 in Dresden!

www.we-online.com
COMCOMPLETE SYSTEMS
IEC60061-1-2 - ISO 7637 - HIRF - Lightning Strike - EFT/Burst - Ringwave
Dips & Intermittents - Radiated & Conducted - Emissions & Immunity
Harmonics & Flicker - Surge & more...

RENT FROM THE LARGEST SUPPLIER OF EMC EQUIPMENT
Teseq - Haefely - Thermo Keytek - Narda - Solar Electronics - IFI - EM Test - Empower
Montana - ETS-Lindgren - Rohde & Schwarz - AE Technics - Com-Power - EMC Partner
AH Systems - Amplifier Research - FCC - Keysight (Agilent) and more...

ADVANCED TEST EQUIPMENT RENTALS
The Knowledge. The Equipment. The Solution.
Call Now 800-404-ATEC (2832)
Visit our site www.atecorp.com

emv
International Exhibition and Conference
on Electromagnetic Compatibility (EMC)
Duesseldorf, Germany, 23 – 25 February 2016

Step into the European market!
Participate at Europe's leading event on electromagnetic compatibility from 23 – 25 February 2016 in Germany.

Further information:
web: e-emc.com
phone: +49 711 61046 63
email: emv@mesago.com

mesago
Messe Frankfurt Group
You have expertise and experience in EMC.

Do you have the recognition you have earned?

iNARTE Professional Certification

- Globally recognized credential
- Independent validation of professional skills—not based on any specific company, product, or course
- Employer and client preferred
- Proof of your commitment to the field and the industry

For more information and application: email inarte-info@exemplarglobal.org

narte.org

Exemplar Global is the new home of iNARTE professional certifications in:
*EMC *ESD *Product Safety *Telecommunications *Wireless Technology
Our new **75 Material** solves low-frequency EMI issues between 100 kHz and 5 MHz and suppresses common-mode noise up to 30 MHz! Only Fair-Rite offers this superior solution in its industry-leading Snap-It and corresponding solid cores.

Fair-Rite Products Corp.
Your Signal Solution

Request A Free Sample Today!
888.324.7748 | Fair-Rite.com

HAEFELY HIPOTRONICS

The new **AXOS 8** integrates all of the best features of a modern conducted immunity test system into one single, user-friendly and economic solution.

- 7 kV Surge Comb. Wave
- 7 kV Telecom Wave
- 7 kV Ring Wave
- 5 kV EFT / Burst
- Voltage Dips & Interrupts
- Pulsed Magnetic Field

ONYX - ESD SIMULATOR

The **ONYX** is a state-of-the-art ESD simulator, available in 16 kV or 30 kV versions. It can be battery or mains operated, without needing an additional base unit. AXOS & ONYX: PERFECT PAIR.
FR 4003
EMI Field Receiver

Unique solution for emission tests to 30 MHz
Integrated Rod Antenna and CISPR/MIL-STD EMI Receiver

- Saturation-free operation
- Free of cable effects
- Fiber optic digital link
- Auto-attenuator & Preamplifier
- Self-diagnostic and calibration
- Plug-in rechargeable battery

TEST LABORATORY
Elite Electronic Engineering Inc.

The right choice for your test.

EMC | ENV Test + Consulting Services

- 60+ Years Test and Engineering Expertise
- ISO 17025 Accredited, iNARTE Test Laboratory
- Large Capacity Facility — Short Lead Times
- One-Stop EMC and ENV Services

- Automotive EMC Testing
- Military and Commercial Aviation
- FCC | CE Mark Testing and Certification
- Environmental Stress Testing
- Engineering Services

Contact us to find out more:
1-800-354-8311 | www.eliteTest.com
Würth Elektronik eiSos
Electronic & Electromechanical Components

- Small quantities: We can deliver upon request our technology leading components direct from stock to assist with pre-production runs
- Worldwide technical sales force: We are present worldwide to support you in finding solutions
- All catalogue parts ex stock
- Reference designs with all major IC manufacturer
- Design kits with life time refill
- Samples free of charge
- Free Design Software

Welcome to EMC 2015 in Dresden!
Taking Our EMC Product Line To The Next Level.

AR Europe now offers the complete range in EMC Test Equipment for commercial and automotive applications with the introduction of Suzhou 3ctest Electronic Co. Ltd.

Providing the absolute best EMC products and systems is no easy task. It requires constant innovation and an unwavering commitment to quality, value and service.

Sometimes “service” means finding the EMC products our customers need, no matter where in the world those products may be. That’s why we’ve partnered with 3ctest in China ... to add their exceptional array of ESD and transient simulators to AR’s product portfolio.

Products include:
- Electrostatic discharge simulators
- Surge generators
- Burst generators
- Voltage dip simulators

This collaboration takes AR Europe’s already existing strong EMC product portfolio to another level, adding a true competitive edge.

To learn more, visit us at www.ar-europe.ie/3ctest or call +353 61 504300.

Contact us at ad@ARWorld.US

Come See Us at EMC Dresden
International Congress Center Dresden (ICC), Dresden, Germany, August 18-20, 2015

ISO 9001:2008 Certified