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Abstract— A statistical model of interference in wireless 
networks is considered, which is based on the traditional 
propagation channel model, a Poisson model of random spatial 
distribution of the nodes in 1-D, 2-D and 3-D spaces (with both 
uniform and non-uniform densities), and a threshold-based 
model of the receiver performance. The power of the nearest 
interferer is used as a major performance indicator, instead of a 
traditionally-used aggregate interference power, since, at the low 
outage region, they have the same statistics and, thus, the former 
is an accurate approximation of the latter. This simplifies the 
problem significantly so that explicit closed-form analysis of the 
outage probability becomes feasible and the effect of various 
system/network parameters becomes also explicit, including the 
impacts of complete/partial interference cancellation, of different 
types of fading and of linear filtering, either alone or in 
combination with each other. When a given number of strongest 
interferers are completely cancelled, the outage probability is 
shown to scale down exponentially in this number. Three 
different models of partial cancellation are considered and 
compared via their outage probabilities, which are obtained in 
compact closed form. The partial cancellation level required to 
eliminate the impact of an interferer is quantified. The effect of a 
broad class of fading processes (including all popular fading 
models) is included in the analysis in a straightforward way, 
which can be positive or negative depending on a particular 
model and propagation/system parameters. The positive effect of 
linear filtering (e.g. by directional antennas) is quantified via a 
new statistical selectivity parameter. The analysis results in 
formulation of an explicit tradeoff relationship between the 
network density and the outage probability, which is a result of 
the interplay between random geometry of node locations, the 
propagation path loss and the distortion effects at the victim 
receiver. 

I. INTRODUCTION 
Wireless communication networks have been recently a 
subject of extensive studies, both from information-theoretic 
and communication perspectives, including development of 
practical transmission strategies and fundamental limits 
(capacity) to assess the optimality of these strategies [1]. 

Mutual interference among several links (e.g. several 
users) operating at the same time places a fundamental limit 
to the network performance. The effect of interference in 
wireless networks at the physical layer has been studied from 
several perspectives [2]-[7]. A typical statistical model of 
interference in a network includes a model of spatial location 
of the nodes, a propagation path loss law (which includes the 
average path loss and, possibly, large-scale (shadowing) and 

small-scale (multipath) fading) and a threshold-based receiver 
performance model. The most popular choice for the model of 
the node spatial distribution is Poisson point process on a 
plane [2]-[7]. Based on this model and ignoring the effect of 
fading, Sousa [3] has obtained the characteristic function (CF) 
of the aggregate (total) interference at the receiver, which can 
be transformed into a closed-from probability density function 
(PDF) in some special cases, and, based on it, the error rates 
for direct sequence (DS) and frequency hopping (FH) 
systems. For such a model, the distribution of the distance to 
nearest (or k-th nearest) interferer and, thus, of its interference 
power can be found in a compact closed form [11]-[13], [18]. 

While using the LePage series representation, Ilow and 
Hatzinakos [4][5] have developed a generic technique to 
obtain the CF of aggregate interference from a Poisson point 
process on a plane (2-D) and in a volume (3-D), which can be 
used to incorporate the effects of Rayleigh and log-normal 
fading in a straightforward way. Relying on a homogeneous 
Poisson point process on a plane, Weber et al [6] have 
characterized the transmission capacity of the network subject 
to the outage probability constraint via lower and upper 
bounds. In a recent work, Weber et al [7] use the same 
approach to characterize the network transmission capacity 
when the receivers are able to suppress some powerful 
interferers, and also include the effect of fading (based on the 
results in [4][5]) and of the transmission strategy [8]. 

A common feature of all these studies is the use of 
aggregate interference (either alone or in the form of signal-
to-interference-plus-noise ratio), and a common lesson is that 
it is very difficult to deal with: while the CF of aggregate 
interference can be obtained in a closed form, the PDF or 
CDF are available only in a few special cases. This limits 
significantly the amount of insight that can be extracted from 
such a model and , thus, one has to rely on various bounds 
and approximations, which also complicate the analysis 
significantly. 

To overcome this difficulty, we adopt a different 
approach: instead of relying on the aggregate interference 
power as a performance indicator, we use the power of the 
nearest (dominant) interferer and follow the approach 
originally proposed in [11]-[13]. As a result, closed-form 
analytical performance evaluation becomes straightforward 
and significant insight can be extracted from such a model, 
including the scenarios where most powerful interferers are 
cancelled, either via linear or nonlinear filtering techniques, 
and/or when interfering signals are subject to a broad class of 
fading processes (including all popular fading models). 
Further simplification by considering the low outage 
probability region makes the effect of various system/network 
parameters explicit and eliminates the need for numerical 
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analysis of the results. 
Using the methods of functions of regular variations, it is 

straightforward to show that the aggregate (total) interference 
is dominated by the nearest interferer in the region of low 
outage probability (i.e. the practically-important region; see 
Theorem 1) and, thus, both models give the same results. This 
result is also consistent with the corresponding results in [6]-
[8], when the “near-field” region contains only one interferer. 
Thus, in the framework of [6]-[8], our results represent the 
lower bound on the outage probability, which is tight at the 
low outage region. 

Using this model, we study the power distribution of the 
dominant interferer in various scenarios, which is further used 
to obtain compact closed-form expressions for the outage 
probability of a given receiver (or, equivalently, of the link of 
a given user) in the 1-D, 2-D and 3-D Poisson field of 
interferers, for both uniform and non-uniform average node 
densities and for various values of the average path loss 
exponent. Comparison to the corresponding results in [3] 
(obtained in terms of the error rates) indicates that the 
dominant contribution to the error rate is due to the outage 
events caused by the nearest (i.e. dominant) interferer, which 
increases with the average node density. The proposed 
method is flexible enough to include the case when a given 
number of strongest interferers are cancelled, either partially 
or completely. In the latter case, the outage probability is 
shown to scale down exponentially in this number. Contrary 
to [7], we do not rely on the simplifying assumption of 
cancelling all interferers in the disk with the given average 
number of interferers; neither we assume that only interferers 
more powerful than the required signal are cancelled1 , i.e. our 
analysis of interference cancellation is exact. In the case of 
partial cancellation, we consider 3 different techniques and 
compare them using compact, closed-form characterisation of 
the outage probabilities, without any simplifying assumptions. 
The level of cancellation required to eliminate the impact of 
an interferer is also quantified. Proper resource allocation can 
significantly relax this requirement. 

The proposed method is also used to include the impact of 
fading. Specifically, we demonstrate (directly in terms of the 
outage probability, without using the characteristic function) 
that the effect of a broad class of fading distributions, which 
includes all popular models (Rayleigh, Rice, Nakagami, log-
normal, composite Rayleigh-log-normal (Suzuki), Weibull 
etc. [9][10]; an explicit condition for distributions to belong to 
this class is given) is a multiplicative constant shift of the 
outage probability when compared to the no-fading case. In 
the case of Rayleigh fading, this is a moderate constant (close 
to 1), and the effect of fading can be either positive 
(constant<1) or negative (constant>1), depending on the path 
                                                           
1the latter assumption affects significantly the results when the threshold 
signal-to-interference (SIR) ratio >1, since the interferers with power below 
the signal power can still cause an outage but are not canceled. This explains 
the corresponding conclusion in [7] that the interference cancellation is only 
effective when the threshold SIR <1. Without such an assumption, this 
conclusion does not hold anymore and the interference cancellation is also 
effective when the threshold SIR>1 (see (19)). Thus, the results for this 
problem are very sensitive to the assumptions made. 

loss exponent and other parameters. In the case of log-normal 
fading, the constant can be significantly greater than 1 and the 
effect of fading is always negative. The composite Rayleigh-
log-normal fading results in a shift equal to the product of 
individual shift constants. 

We further show that, for all fading distributions 
considered above, the total interference power is still 
dominated by the nearest interferer and the typical outage 
events (total interference power exceeding a threshold) are 
due to such an interferer being not in a deep fade. Thus, the 
outage probabilities defined in terms of the total and nearest 
interferer’s power are the same at low outage region. The 
combined effect of fading and complete/partial interference 
cancellation is also considered and the main conclusions 
above are shown to hold in this case as well. It is shown that 
fading relaxes the requirement to the interference cancellation 
level. 

Our analysis results in the formulation of the outage 
probability-network density tradeoff: for a given average 
density of the nodes, the outage probability is lower bounded 
or, equivalently, for a given outage probability, the average 
density of the nodes is upper bounded. This tradeoff is a result 
of the interplay between a random geometry of node 
locations, the propagation path loss and the distortion effects 
at the victim receiver.  

Using the method developed, we analyze the beneficial 
effect of linear filtering (e.g. by directional antennas, which 
attenuate some interferers based on their angles of arrival) on 
the outage probability and on the tradeoff via a new statistical 
selectivity parameter (Q-parameter), which is somewhat 
similar to the traditional antenna gain, but also includes the 
statistical distribution of interferers over the filtering variables 
(e.g. angles of arrival). Comparison of linear filtering to 
complete/partial cancellation of nearest interferers shows that 
the complete cancellation (or partial cancellation with the 
sufficient cancellation level) is most efficient, and that linear 
filtering and partial cancellation are similar in their impact on 
the outage probability. 

As a by-product of our analysis, some known results (e.g. 
the effect of fading) originally obtained via elaborate analysis 
are derived in a straightforward and simple way. 

The paper is organized as follows. In Section II, we 
introduce the system and network model. In Section III, the 
distribution of the interference-to-noise ratio of the nearest 
interferer is given for this model, including the case when 
most powerful interferers are cancelled. Based on this, the 
node density – outage probability tradeoff is presented in 
Section IV, including the case of complete/partial interference 
cancellation. The impact of fading is analyzed in Section V, 
and the impact of linear filtering is analyzed in Section VI. 

II. NETWORK AND SYSTEM MODEL 
As an interference model of wireless network at the physical 
layer, we consider a number of point-like transmitters (Tx) 
and receivers (Rx) that are randomly located over a certain 
limited region of space mS , which can be one ( 1m = ), two 
( 2m = ),or three ( 3m = ) -dimensional (1-D, 2-D or 3-D). 
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This can model location of the nodes over a highway or a 
street canyon (1-D), a residential area (2-D), or a downtown 
area with a number of high-rise buildings (3-D). In our 
analysis, we consider a single (randomly-chosen) receiver and 
a number of transmitters that generate interference to this 
receiver. We assume that the spatial distribution of the 
transmitters (nodes) has the following properties: (i) for any 
two non-overlapping regions of space aS  and bS , the 
probability of any number of transmitters falling into aS  is 
independent of how many transmitters fall into bS , i.e. non-
overlapping regions of space are statistically independent; (ii) 
for infinitesimally small region of space dS , the probability 

( 1, )k dS=P of a single transmitter ( 1k = ) falling into dS  is 
( 1, )k dS dS= = ρP , where ρ  is the average spatial density of 

transmitters (which can be a function of position). The 
probability of more than one transmitter falling into dS  is 
negligible, ( 1, ) ( 1, )k dS k dS> << =P P  as 0dS → . Under 
these assumptions, the probability of exactly k  transmitters 
falling into the region S  is given by Poisson distribution, 

 ( , ) / !N kk S e N k−=P  (1) 

where 
S

N dS= ρ∫  is the average number of transmitters 
falling into the region S . If the density is constant, then 
N S= ρ . Possible scenarios to which the assumptions above 
apply, with a certain degree of approximation, are a sensor 
network with randomly-located non-cooperating sensors; a 
network(s) of mobile phones from the same or different 
providers (in the same area); a network of multi-standard 
wireless devices sharing the same resources (e.g. common or 
adjacent bands of frequencies) or an ad-hoc network. 

Consider now a given transmitter-receiver pair. The power 
at the Rx antenna output rP  coming from the transmitter is 
given by the standard link budget equation [9], 
 r t t rP PG G g=  (2) 

where tP  is the Tx power, ,t rG G  are the Tx and Rx antenna 
gains, and g  is the propagation path gain (=1/path loss), 

a l sg g g g= , where ag  is the average propagation path gain, 
and ,l sg g  are the contributions of large-scale (shadowing) 
and small-scale (multipath) fading, which can be modeled as 
independent log-normal and Rayleigh (Rice) random 
variables, respectively [9]. 

The widely-accepted model for ag  is ag a R−ν
ν= , where 

ν  is the path loss exponent, and aν  is constant independent 
of R  [9]. In the traditional link-budget analysis of a point-to-
point link, it is a deterministic constant. However, in our 
network-level model ag  becomes a random variable since the 
Tx-Rx distance R  is random (due to random location of the 
nodes) and it is this random variable that represents a new 
type of fading, which we term “network-scale fading”, since it 
exhibits itself on the scale of the whole area occupied by the 
network. Since ag  does not depend on the local propagation 
environment around the Tx or Rx ends that affect ,l sg g  but 
only on the global configuration of the Tx-Rx propagation 
path (including the distance R , of which ,l sg g  are 
independent) [9], the network-scale fading in this model is 
independent of the large-scale and small-scale ones, which is 

ultimately due to different physical mechanisms generating 
them. Fig. 1 illustrates this. The distribution functions of ag  
in various scenarios have been given in [12][13]. 

 

 
Fig. 1. Illustration of the problem geometry and three associated scales: 
small-scale (immediate neighborhood of a Tx; this is the scale of multipath 
fading), large-scale (extends beyond immediate neighborhood but is smaller 
than the whole network area; this is the scale of shadow fading) and network-
scale (includes the whole network; this is the scale of network fading in (6)-
(8)). 

III. INTERFERENCE TO NOISE RATIO 
We consider a fixed-position receiver (e.g. a base station of a 
given user) and a number of randomly located interfering 
transmitters (interferers, e.g. mobile units of other users) of 
the same power tP 2. Only the network-scale fading is taken 
into account in this section, assuming that 1l sg g= =  (this 
assumption is relaxed in section V). For simplicity, we also 
assume that the Tx and Rx antennas are isotropic (this 
assumption is relaxed in section VI), and consider the 
interfering signals at the receiver input. 

The statistics of transmitters’ location is given by (1). 
Transmitter i produces the average power ( )ai t a iP P g R=  at 
the receiver input, and we consider only the signals exceeding 
the Rx noise level 0P , 0aiP P≥ . We define the interference-
to-noise ratio (INR) ad  in the ensemble of the interfering 
signals via the most powerful (at the Rx input) signal3, 
 1 0/a ad P P=  (3) 

where, without loss of generality, we index the transmitters in 
the order of decreasing Rx power, 1 2 ...a a aNP P P≥ ≥ ≥ . The 
most powerful signal is coming from the transmitter located at 
the minimum distance 1r , 1 1( )a t aP P g r= . The cumulative 
distribution function (CDF) of the minimum distance can be 
easily found [11]-[13][18], 

 ( )( )1( ) 1 expF r N V= − −  (4) 

where ( )
V

N V dV= ρ∫  is the average number of transmitters 
in the ball ( )V r  of radius r . The corresponding PDF can be 
found by differentiation, 

                                                           
2following the framework in [11]-[13], this can also be generalized to the case 
of unequal Tx powers. 
3 It can be shown that, in the small outage region, the total interference power 
(i.e. coming from all transmitters) is dominated by the contribution of the 
most powerful signal, i.e. the single events dominate the outage probability – 
see Theorem 1. 
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 1 ( )
( ) N

V r
f r e dV−

′
= ρ∫  (5) 

where ( )V r′  is sphere of radius r  and the integral in (5) is 
over this sphere.  

The probability that the INR exceeds value D  is 
{ } { }1 1Pr Pr ( ) ( ( ))ad D r r D F r D> = < = , where ( )r D  is such 

that 0( ( ))aP r D P D= , so that the CDF of ad  is 
 { }( ) 1 Pr exp( ( ))d aF D d D N D= − > = −  (6) 

where 
( )( )

( )
V r D

N D dV= ρ∫  is the average number of 
transmitters in the ball ( )( )V r D  of the radius 

1/
0( ) ( / )tr D Pa P D ν

ν= . The corresponding PDF can be 
obtained by differentiation, 

 
( )

( ( ))

( )( )
N D

d V r D

r D ef D dV
D

−

′
= ρ

ν ∫  (7) 

When the average spatial density of transmitters is constant, 
constρ = , (6), (7) simplify to [11]-[13], 

 
/

max
/

0
( ) exp exp

m
t

d m m
Pa NF D c
P D D

ν
ν

ν

⎧ ⎫ ⎧ ⎫⎛ ⎞⎪ ⎪= − ρ = −⎨ ⎬ ⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭⎪ ⎪⎩ ⎭

, 

{ }/ 1 /
max max( ) expm m

d
mf D N D N D− ν− − ν= −
ν

 (8) 

where 1 2c = , 2c = π  and 3 4 / 3c = π , max max
m

mN c R= ρ  is 
the average number of transmitters in the ball of radius maxR , 
which we term “potential interference zone”,  and maxR  is 
such that max 0( )aP R P= , i.e. a transmitter at the boundary of 
the potential interference zone produces signal at the receiver 
exactly at the noise level; transmitters located outside of this 
zone produce weaker signals, which are neglected in the 
analysis (see Fig. 2). Note that (8) gives the distribution of the 
INR as a simple explicit function of the system and 
geometrical parameters, and ultimately depends on 

max , ,N m ν  only. 
 

maxR

DR

 

Fig. 2. Interference zones on the network scale. Potential interference zone: 
max 0 max, ( ) ( )a aR R P R P P R≤ ≥ =  (the signal power exceeds the Rx noise 

level); active interference zone: , ( ) ( )D a df a DR R P R P P R≤ ≥ =  (the signal 
power exceeds the maximum distortion-free power). 

 

When ( 1)k −  most powerful signals, which are coming 
from ( 1)k −  closest transmitters, do not create any 
interference (i.e. due to frequency, time or code separation in 
the multiple access scheme, or due to any other form of 
separation or filtering), the CDF and PDF of the distance kr  
to the most powerful interfering signal of order k  can be 
found in a similar way. The CDF of the INR ad  in this case is 
given by 
 1( )

0( ) ( ) / !kN D i
dk iF D e N D i−−

=
= ∑  (9) 

In the case of constant average density constρ = , the CDF 
and PDF of the INR simplify to [11]-[13], 

 { }
1

/ max
max /

0

1( ) exp
!

ik
m

dk m
i

NF D N D
i D

−
− ν

ν
=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ,  

 { }1max /
max( ) exp

( 1)!

k km
m

dk
m Nf D D N D

k
− − − νν= −

ν −
 (10) 

which are also simple, explicit functions of max , ,N m ν . 

IV. OUTAGE PROBABILITY-NODE DENSITY TRADEOFF 
Powerful interfering signals can result in significant 
performance degradation due to linear and nonlinear 
distortion effects in the receiver when they exceed certain 
limit, which we characterize here via the receiver distortion-
free dynamic range (i.e. the maximum acceptable 
interference-to-nose ratio) max 0/dfD P P= , where maxP  is the 
maximum interfering signal power at the receiver that does 
not cause significant performance degradation. If a dfd D> , 
there is significant performance degradation and the receiver 
is considered to be in outage, which corresponds to one or 
more transmitters falling into the active interference zone (i.e. 
the ball of radius ( )dfr D ; the signal power coming from 
transmitters at that zone exceeds maxP ), whose probability is 

 { }Pr 1 ( )out a df d dfd D F D= > = −P  (11) 

For given outP , one can find the required distortion-free 
dynamic range (“outage dynamic range”) dfD  

 1(1 )df d outD F −= −P  (12) 

We note that, in general, dfD  is a decreasing function of 
outP , i.e. low outage probability calls for high distortion-free 

dynamic range. For simplicity of notations, we further drop 
the subscript and denote the spurious-free dynamic range by 
D . 

While the definition of outage probability above relies on 
the maximum interfering power, the same outage probability 
holds in terms of the total interfering power at the low outage 
region, as the theorem below demonstrates. 

Theorem 1: Consider the outage probability in (11). At the 
low outage region, it converges to the outage probability 
defined via the total interference power, i.e. 

 
{ }
{ }1

Pr
lim 1

Pr
aii

x a

P x

P x→∞

>
=

>
∑

 (13) 

Proof: via the functions of regular variation; see Appendix 
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1 for details. 
Thus, at the low outage region, outP  in (11) serves as an 

accurate approximation of the outage probability in terms of 
the total interference power,  

 { } { }1Pr Pr ,  for large ai ai P x P x x> ≈ >∑ , (14) 

and all our results also apply to such an outage probability. A 
significant advantage of (11) is that a closed-form analysis 
becomes straightforward. 

A. All interfering signals are active (k=1)  
We consider first the case of 1k = , i.e. all interfering 

signals are active. The outage probability can be evaluated 
using (6) and (11). From practical perspective, we are 
interested in the range of small outage probabilities 1out <<P , 
i.e. high-reliability communications. When this is the case, 

( ) 1dF D →  and using MacLaurean series expansion 
1Ne N− ≈ − , (11) simplifies to 

 
( )( )out V r D

N dV≈ = ρ∫P  (15) 

which further simplifies, in the case of constρ = , to 

 /
max

m
out N D− ν≈P  (16) 

Note that, in this case, the outage probability outP  scales 
linearly with the average number maxN  of nodes in the 
potential interference zone and also with the node density ρ , 
and it effectively behaves as if the number of nodes were 
fixed (not random) and equal to maxN . Based on this, we 
conclude that the single-order events (i.e. when only one 
signal in the ensemble of interfering signals exceeds the 
threshold maxP ) are dominant contributor to the outage, which 
is also consistent with Theorem 1. This immediately suggests 
a way to reduce significantly the outage probability by 
eliminating the dominant interferer in the ensemble. Using 
(16), the required spurious-free dynamic range of the receiver 
can be found for given outage probability, 

/
max( / ) m

outD N ν≈ �P . Note that higher values of ν  and lower 
values for m  call for higher dynamic range. Intuitively, this 
can be explained by the fact that when the transmitter moves 
from the boundary of the potential interference zone (i.e. 

maxR R= , 0( )aP R P= ) closer to the receiver ( maxR R<< ), 
the power grows much faster when ν  is larger, so that 
closely-located transmitters produce much more interference 
(compared to those located close to the boundary) when ν  is 
large, which, combined with the uniform spatial density of the 
transmitters, explains the observed behavior. The effect of m 
can be explained in a similar way. 

To validate the accuracy of approximation in (15), and 
also the expressions for the dynamic range PDF and CDF in 
the previous section, extensive Monte-Carlo (MC) 
simulations have been undertaken. Fig. 3 shows some of the 
representative results. Note good agreement between the 
analytical results (including the approximations) and the MC 
simulations. It can be also observed that the tails of the 
distributions decay much slower for the 4ν =  case, which 
indicates higher probability of high-power interference in that 

case and, consequently, requires higher spurious-free dynamic 
range of the receiver, in complete agreement with the 
predictions of the analysis. Note also that the outage 
probability evaluated via the total interference power 
coincides with that evaluated via the maximum interferer 
power (at the small outage region), in complete agreement 
with Theorem 1. 

Consider now a scenario where the actual outage 
probability has not to exceed a given value outP  for the 
receiver with a given distortion-free dynamic range D . Using 
(8) and (11), the average number of transmitters in the active 
interference zone (ball of radius ( )r D ) can be upper bounded 
as ln(1 )outN ≤ − −P . Using the expression for N , one 
obtains a basic tradeoff relationship between the network 
density and the outage probability, 

 
( )( )

ln(1 )outV r D
N dV= ρ ≤ − −∫ P  (17) 

i.e. for given outage probability, the network density is upper 
bounded or, equivalently, for given network density, the 
outage probability is lower bounded.  

In the case of uniform density constρ =  and small outage 
probability, 1out <<P , this gives an explicit tradeoff 
relationship between the maximum distortion-free 
interference power at the receiver maxP , the transmitter power 

tP  and the average node density for distortion-free receiver 
operation, 

 ( ) /1
max / m

m out tc P Pa ν−
νρ ≤ P  (18) 

or, equivalently,  an upper bound on the average density of 
nodes in the network. As intuitively expected, higher 

max, ,out P νP  and lower ,tP m  allow for higher network 
density. The effect of ν  is intuitively explained by the fact 
that higher ν  results in larger path loss or, equivalently, in 
smaller distance at the same path loss, so that the transmitters 
can be located more densely without increasing interference 
level. The effect of the other parameters can be explained in a 
similar way. 
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Fig. 3. The CCDF of 1 0/a ad P P=  and 0/tot totd P P=  (also the outage 
probability) evaluated from Monte-Carlo (MC) simulations for 2m = , 

2 & 4ν = , 10 5
0 10 , 1, 10tP P− −= = ρ = ; analytic CCDF of ad  (derived 

from (8)) and its approximation in (16) are also shown. Note that the 
approximation becomes very accurate at 0.1out ≤P  and that the CCDF of 
total and maximum interference power are the same at this region. 
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B.  (k-1) strongest interfering signals are cancelled 
We now assume that ( 1)k −  strongest interfering signals 

are eliminated via some means (e.g. by filtering or resource 
allocation). In this case, (9), (10) apply and (15) generalizes to 

 max
/

1 1
! !

k
k

out m
NN

k k D ν

⎛ ⎞
≈ = ⎜ ⎟

⎝ ⎠
P  (19) 

which can be expressed as 1
,1 ,1!

k
out out outk= ≤P P P , where 

,1outP  is the outage probability for 1k =  (see (15)). In the 
small outage region, ,1 1out <<P  and ,1out out<<P P , i.e. there 
is a significant beneficial effect of removing ( 1)k −  strongest 
interferers, which scales exponentially with k. Fig. 4 
illustrates this case. Further comparison to the corresponding 
result in [7] shows that the assumption there of cancelling all 
interferers, which exceed the required signal and are in the 
disk with the given average number of interferers, affects 
significantly the result, resulting in no exponential scaling 
down of the outage probability and ultimately responsible for 
the conclusion that interference cancellation is effective only 
when the threshold SIR <1. If this assumption is removed, the 
interference cancellation is effective for any SIR, as (19) 
demonstrates. 
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Fig. 4. The CCDF of 1 0/a ad P P=  and 0/tot totd P P=  with the most 
powerful signal cancelled ( 2k = ), evaluated from MC simulations ( 510  
trials) and from the analysis, for the same scenario as in Fig. 1. Significant 
improvement due to interference cancellation for the whole range of INR 
(compare to Fig. 3) is clear. 

 
By comparing the contribution of k-th and (k+1)-th 

nearest interferers, it is straightforward to show that the 
approximation in (19) holds when  

 ( ) /
max /( 1)

m
D N k

ν
> +  (20) 

It should also be noted that outP  in (19) scales as max
k

N  or 
as kρ , i.e. it is much more sensitive to the node density in this 
case, and the sensitivity increases exponentially with k . 

In a similar way, the node density-outage probability 
tradeoff can be formulated. In the for small outage probability 
region 1out <<P , it can be expressed as 

 
( ) ( )1/

( )
! k

outV r D
N dV k= ρ ≤∫ P  (21) 

Comparing (21) to (17), one can clearly see the beneficial 
effect of “removing” ( 1)k −  most powerful interferers on the 
outage probability-network density tradeoff, since 
( )1/! k

out outk >>P P  in the small outage regime, so that higher 
node density is allowed at the same outage probability. 

In the case of uniform density, (21) reduces to 

 ( ) ( )1/ /1
max! /k m

m out tc k P Pa ν−
νρ ≤ P  (22) 

which is a generalization of (18) to 1k > . 

C.  Partial cancellation of (k-1) strongest interferers 
Following [7], one can also consider the case of non-ideal 

(realistic) interference cancellation, when (k-1) nearest 
interferers are attenuated by a factor of 0 1≤ α ≤  (so that the 
interference power is aiPα ), where 0α =  corresponds to the 
ideal case (complete cancellation) and 1α =  corresponds to 
the case of no cancellation at all. When α  is independent of 
D , it is straightforward to show that asymptotically 
( D →∞ ) the nearest interferer dominates the outage 
probability, which is given by 

 / /
max ,  0m m

out N Dν − ν≈ α α >P  (23) 

and which is also the same as that of cancelling only the 
nearest interferer ( 2k = ), i.e. partial cancelling of more than 
1 nearest interferer by a fixed level does not bring any 
additional advantage asymptotically, and the outage 
probability in this case significantly exceeds that of complete 
cancellation (compare (23) to (19)). Comparing (23) to (16), 
the effect of partial cancellation by a factor of α  is to reduce 

outP  by a factor of /m να  compared to the no cancellation 
case, i.e. by a factor of α  for 2m =  and 2ν =  (free space 
propagation) and by a factor of α  for 2m =  and 4ν =  
(two-ray propagation or ground reflection).  

One can also consider another scenario, where ( 2)k −  
nearest interferers are cancelled completely (for example, by 
proper resource allocation, e.g. frequency or time) and 
( 1)k − -th interferer is cancelled partially (e.g. by processing 
at the receiver), 3k ≥ . In such a case, it is straightforward to 
show that the (k-1)-th interferer dominates asymptotically and 
the outage probability is given by 

 
1( 1) /

max
/ ,  0

( 1)!

kk m

out m
N

k D

−− ν

ν

⎛ ⎞α
≈ α >⎜ ⎟− ⎝ ⎠

P  (24) 

i.e. a significant improvement over (23), but still higher than 
(19) (complete cancellation). Similarly to (20), the 
approximation in (24) applies when 

 ( ) /
max1

1 /
m

kD N k
ν

−>
α

 (25) 

Finally, one can also consider the case where α  scales as 
a function of D  and ask a question: “What level of 
cancellation is required to eliminate the effect of (k-1)-th 
nearest interferer?” Assuming that (k-2) nearest interferers 
are cancelled completely and comparing the contribution of 
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the partially-cancelled (k-1)-th interferer (see (24)) to k-th 
interferer (not cancelled at all, see (19)), it is straightforward 
to show that the k-th interferer dominates if 

 ( ) / ( 1)
max1/( 1)

1 /
m k

k N k
D

ν −

−α <  (26) 

Thus, perfect cancellation is not a prerequisite and 0α >  can 
also do the job, if it properly scales with D . 

Similar condition can also be obtained when (k-1) nearest 
interferers are partially cancelled by the same factor α , 

 ( ) /1
max1

1 / !
mk

k N k
D

ν−

−α <  (27) 

which is, however, a significantly tighter requirement than 
(26), as intuitively expected. Thus, complete cancellation of 
some nearest interferers (e.g. via resource allocation) is of 
significant help when only partial (realistic) cancellation at 
the receiver is possible. 

*** 
If the total interference power is used to define the outage 

probability, the results will be the same in the small outage 
region, as indicated by the following theorem (equivalent of 
Theorem 1). 

Theorem 2: Consider the outage probability in (19). At the 
low outage region, it converges to the outage probability 
defined via the total interference power, i.e. 

 
{ }

{ }
Pr

lim 1
Pr

N
aii k

x ak

P x

P x
=

→∞

>
=

>

∑
 (28) 

and, thus, the following approximation holds, 

 { } { }Pr Pr ,  for large N
ai aki k P x P x x

=
> ≈ >∑ . (29) 

Proof: along the same lines as that of Theorem 1. 
Fig. 4 validates this Theorem via Monte-Carlo 

simulations. We also note that this Theorem also applies 
when a partial interference cancellation (as above) is 
considered and, thus, the outage probabilities in (23), (24) 
also hold in terms of the total interference power. 

V. IMPACT OF FADING 
While the effect of fading on the total interference power 

under the Poisson spatial distribution of interferers has been 
analysed in [4][5] (using the LePage series representation) in 
terms of the characteristic function only, our analysis here is 
explicit in terms of the outage probability and thus provides 
additional insight into interference-generating mechanisms 
and their impact. In particular, we demonstrate that the total 
interference power is dominated by that of the nearest 
interferer for a broad class of fading distributions (including 
all popular models), which allows us to derive compact 
closed-form expressions for the outage probability. 

A. Impact of Rayleigh fading 
Let us consider the ordered average powers 

1 2 ...a a aNP P P≥ ≥ ≥  which are further subjected to Rayleigh 

fading so that the fading received powers are si si aiP g P= , 
where sig  are the Rayleigh fading factors, assumed to be 
i.i.d., with the standard pdf ( ) x

gsf x e−= . The dynamic range 
is now defined as 1 0 1/s s a sd P P d g= = , where 1 0/a ad P P= , 
i.e. via the contribution of the nearest interferer4, and its 
cumulative CDF (CCDF), i.e. the outage probability, is 

 { } ( )
0

Pr ( ) /out s gs dd D f g F D g dg
∞

= > = ∫P , (30) 

where ( ) ( )1d dF x F x= −  is the CCDF of ad  . At the low 
outage region, i.e. at the distribution tail D →∞ , it can be 
approximated as 

 /
max( / 1) m

out m N D− ν≈ Γ ν +P , (31) 

where Γ  is the gamma function (see Appendix 2 for proof). 
Comparing to (16), we conclude that the effect of Rayleigh 
fading is the multiplicative shift by a constant factor 

( / 1)mΓ ν + , and the functional form of the distribution (i.e. 
regular variation or heavy tail) is preserved. Since 

( / 1)mΓ ν +  can be greater or smaller than 1, depending on 
/m ν  (e.g. 2, 4 0.89m = ν = → Γ ≈ ), the effect of Rayleigh 

fading can be both positive and negative. 
In a similar way, one obtains the outage probability when 

( 1)k −  nearest interferers are cancelled, 

 max
/

( / 1)
!

k

out m
km N

k D ν

⎛ ⎞Γ ν +
≈ ⎜ ⎟

⎝ ⎠
P , (32) 

Since the INR is the scaled interference power, the later will 
follow the same distribution as in (32) (up to a constant) and, 
thus, { }Pr skP x>  is a function of regular variation so that 
Theorem 2 applies, i.e. 

Theorem 3: When the interferers are subject to the average 
path loss and Rayleigh fading, the nearest interferer 
dominates in terms of the outage probability at the low outage 
region, i.e. 

 
{ }

{ }
Pr

lim 1
Pr

N
sii k

x sk

P x

P x
=

→∞

>
=

>

∑
 (33) 

and, 

 { } { }Pr Pr ,  for large N
si ski k P x P x x

=
> ≈ >∑ , (34) 

Thus, the results in (31), (32) also apply to the outage 
probability defined via the total interference power. This 
complements the results in [4] obtained in terms of the 
characteristic function with compact, closed-form expressions 
for the outage probability and also explicitly demonstrates the 
effect of cancelling (k-1) nearest interferers. 

The intuition behind Theorem 3 is that the distributions in 
(11), (16), (19) are much more heavily-tailed (slowly-
decaying) than the Rayleigh distribution so that outage events 
in the combined distribution are mostly caused by nearby 
interferers without deep Rayleigh fades and the combined 

                                                           
4 which may sometimes be not the largest one (due to the effect of Rayleigh 
fading). However, as we show below, the nearest interferer contribution 
dominates the tail of the total interference distribution and thus the outage 
probability. 
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distribution is a slightly shifted version of the original one 
(without fading). 

B. Impact of log-normal and combined fading 
This can be analysed in a similar way. The main results 

are summarized as follows. When the interferers are subject 
to the average path loss and log-normal i.i.d. fading, and 
when ( 1)k −  nearest interferers are cancelled, the outage 
probability is 

 max/
/!

k
km

out m
M N

k D
ν

ν

⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠
P , (35) 

where ( )21
/ 2exp ( / )kmM kmν = σ ν  is /km ν -th moment of the 

log-normal random variable, 

 ( )2
2

ln/ 11
/ 2 0 2

exp xkm
kmM x dx

∞ ν−
ν πσ σ

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ , (36) 

where σ  is the standard deviation. The case when no 
interferers are cancelled corresponds to 1k = . Comparing 
(35) to (19), we conclude that the effect of log-normal fading 
is a shift by a constant factor 1> , i.e. strictly negative as 
opposed to Rayleigh fading where it can be both positive and 
negative. Since the regular varying (heavy tail) nature of the 
distribution is preserved, Theorem 3 also holds in this case, 
i.e. the nearest interferer is still dominant.  

Likewise, one can consider the combined effect of 
Rayleigh and log-normal fading. The outage probability is 

 max/
/

( / 1)
!

k
km

out m
km M N

k D
ν

ν

⎛ ⎞Γ ν +
≈ ⎜ ⎟

⎝ ⎠
P , (37) 

and Theorem 3 also applies. Note that the effects of Rayleigh 
and log-normal fading are multiplicative in terms of the shift 
constant, and the heavy tail of the distribution, which is due to 
the Poisson spatial distribution of the interferers and the 
average path loss, is not affected. 

C. The impact of a broad class of fading distributions 
The results above are not limited to Rayleigh or log-

normal fading but rather hold for a broad class of distributions 
whose tails are dominated by the tail of akP . 

Theorem 4: Let the interferers be subject to the average 
path loss and fading, i i aiP g P= , where ig  is the fading power 
gain, i.i.d. for each interferer, and the fading distribution tail 
is dominated by that in (19), i.e. ,  

 ( ) /lim Pr 0km
x ig x x ν
→∞ > = , (38) 

then the outage probability is 

 max/
/!

k
km

out m
M N

k D
ν

ν

⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠
P , for large D, (39) 

where /kmM ν  is /km ν -th moment of the fading power 
gain, /

/ 0
( )km

km gM x f x dx
∞ ν

ν = ∫ , and ( )gf x  is the pdf of g . 
Furthermore, the nearest interferer dominates the outage 
events, i.e. Theorem 3 holds, and, thus, the outage in (39) 
holds in terms of both the total and nearest interferer’s power. 

Proof: along the same lines as that of Theorem 3 and that 
of (31). 

It should be noted that Theorem 4 includes almost all 
popular fading models, i.e. Rayleigh, Rice, Nakagami, 
Weibul, log-normal, or any distribution whose tail decays 
faster than polynomially. It is also interesting to note that the 
fading enters the outage probability only via the moment 

/kmM ν  and the condition of tail dominance, all other details 
being irrelevant. The effect of fading is positive for 

/ 1kmM ν <  and negative for / 1kmM ν > . 
Finally, the effect of fading can also be considered jointly 

with partial interference cancellation, and the outage 
probabilities in (23), (24) are respectively modified to 

 / /
max/

m m
out mM N Dν − ν

ν≈ αP  (40) 

 
1( 1) /

max( 1) /
/( 1)!

kk m
k m

out m

M N
k D

−− ν
− ν

ν

α ⎛ ⎞
≈ ⎜ ⎟− ⎝ ⎠

P  (41) 

i.e. the multiplicative constant shift of the outage probability 
is preserved. The required partial cancellation levels in (26) 
and (27) are modified to  

 
/ ( 1)

max/
1/( 1)

( 1) /

1
m k

km
k

k m

M N
M kD

ν −

ν
−

− ν

⎛ ⎞
α < ⎜ ⎟⎜ ⎟⋅⎝ ⎠

 (42) 

 
/1

max/
1

/

1
!

mk
km

k
m

M N
M kD

ν−
ν

−
ν

⎛ ⎞
⎜ ⎟α <
⎜ ⎟⋅⎝ ⎠

 (43) 

Noting that /kmM ν  increases with k  for Rayleigh, log-
normal and composite fading, its effect on the required 
cancellation level is beneficial in both cases (i.e. higher α  is 
acceptable), and it is more pronounced for the case of partial 
cancellation of ( 1)k −  nearest interferers. This is intuitively 
explained by the fact that these fading distributions decay 
very fast (exponentially or sub-exponentially) at the large 
signal region but only polynomially at the low signal region 
and, thus, the fading results more often in a weaker signal 
than in a stronger one. 

VI. THE IMPACT OF LINEAR FILTERING 
In the previous sections, we considered the interfering signals 
at the Rx input assuming that the Rx antenna was isotropic, 
i.e. no measures to eliminate some of the interfering signals 
by linear filtering at the receiver were considered. In this 
section, we explore the effect of linear filtering, which may 
include filtering by the Rx antenna based on the angle of 
arrival, polarization and frequency, and by linear frequency 
filters at the receiver (at RF, IF and possibly basedband). 
Since, as it follows from the previous section, the average 
number of interfering signals N  is a key parameter, which 
determines the INR or dynamic range of interfering signals 
(see (6),(9)) and ultimately the network density-outage 
probability tradeoff (e.g. (17), (21)), we consider the impact 
of linear filtering on this parameter. For simplicity, we further 
assume no nearest interference cancellation and no fading. 
The impact of these factors can be incorporated into the 
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analysis in a straightforward way following the results in 
sections IV and V. 

Let 1 2[ , ... ]Tlz z z=z  be the set of filtering variables (i.e. 
frequency, polarization, angle of arrival etc.) and ( )zf z  be the 
PDF of incoming interfering signals over these variables. The 
probability of a randomly-chosen input signal (arriving from a 
randomly-selected node) falling in the interval dz  is 

( )zf dz z , and the probability that the filter output power of 
this signal exceeds the threshold 0P  is 

 { }
0

/
, 0

/ ( )

Pr ( ) ( )m
a out a

P K

P P w P dP K
∞

ν> = =∫
z

z  (44) 

where 0 ( ) 1K≤ ≤z  is the normalized filter power gain (e.g. 
antenna pattern), and / 1 /

0( ) m mm
aw P P Pν − − ν

ν= , 0P P≥ , is the 
PDF of the signal’s power P . Note that /mK ν  represents the 
reduction in probability of signal power exceeding the 
threshold from the input (where it is equal to one) to the 
output of the filter and thus is a filter gain for given values of 
filtering variables. The average number of output signals 
exceeding the threshold in the interval dz  is 

/ ( ) ( )m
out z indN K f d dNν= z z z , where indN  is the average 

number of input signals exceeding the threshold in the same 
interval. Finally, the total average number of output signals 
exceeding the threshold 0P  is 

 /out inN N Q= ,  
1

/ ( ) ( ) 1m
zQ K f d

−
ν

Δ

⎛ ⎞
= ≥⎜ ⎟⎜ ⎟
⎝ ⎠
∫
z

z z z  (45) 

where inN  is the average number of input signals, Q is the 
average statistical filter gain, which represents its ability to 
reduce the average number of visible (i.e. exceeding the 
threshold) interfering signals, and Δz  is the range of filtering 
variables. This gain further transforms into reduction in the 
interfering signals’ dynamic range (see (6), (9)) or in the 
outage probability, 

 max
/1 outN in

out out m
N Ne N
Q Q D

−
ν= − ≈ = =

⋅
P  (46) 

and also improves the network density-outage probability 
tradeoff (i.e. (21), (22)), 

 
( )( )in outV r D

N dV Q= ρ ≤∫ P  (47) 

 ( ) /1
max / m

m out tQc P Pa ν−
νρ ≤ P  (48) 

i.e. the network density ρ  can be increased by a factor of Q  
at the same performance compared to the case of no filtering. 
Clearly, using directional antennas with highly-directive 
pattern, for example, results in large Q (similarly to the 
antenna gain) and thus the network density can be increased 
by a large factor Q, as expected intuitively. A detailed 
analysis of Q for many popular antenna types can be found in 
[15]-[17]. 

Comparing the effect of linear filtering in (46) to that of 
complete cancellation of (k-1) nearest interferers in (19) and 
to partial cancellation in (23), it is clear that the complete 
cancellation (or partial cancellation when the cancellation 
level is sufficient, i.e. as in (27)) is the most superior 
technique (scale exponentially with k , resulting in significant 

decrease in the outage probability), and that the linear 
filtering and partial cancellation are somewhat similar in their 
effect on the outage probability (scale polynomially with α  
and Q). 

VII. CONCLUSION 
A model of interference in wireless networks with Poisson 
spatial distribution of the nodes is considered, which includes 
the average propagation path loss and also different types of 
fading. Since the total interference power is dominated by the 
nearest interferer, the latter is used to define the outage 
probability. This simplifies the analysis significantly, results 
in compact, closed-form characterisation of the outage 
probability, including the case where some interferers are 
cancelled, either completely or partially, and allows to 
compare different cancellation strategies and to find the 
required level of cancellation. The effect of fading is 
characterized for a broad class of distributions, including all 
popular fading models and combined with the effect of 
interference cancellation. The effect of linear filtering at the 
receiver (e.g. by directional antennas) is quantified via a new 
statistical filter gain, and also compared to that of 
complete/partial cancellation of nearest interferers. These 
results allow one to express the tradeoff between node density 
and outage probability in an explicit, closed form for a 
number of scenarios. 
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X. APPENDIX 1 
Proof of the Theorem 1: we need the following lemma 

(Lemma 4.4.2 in [14]), 
Lemma 1: Let X be a positive random variable with a 

regularly varying tail, i.e. there is a number 0b >  such that 
1a∀ > , 

 { }
{ }

Pr
lim

Pr
b

x

X a x
a

X x
−

→∞

> ⋅
=

>
 (49) 

and let the tail of X to dominate the tail of another positive 
random variable Y, i.e. 

 { }
{ }

Pr
lim 0

Prx

Y x
X x→∞

>
=

>
 (50) 

Then 

 { }
{ }

Pr
lim 1

Prx

X Y x
X x→∞

+ >
=

>
 (51) 

It is straightforward to verify that the tail of 1aP  dominates 
the tail of 2aP  and also the tail of ( ) 21 aN P−  for any finite 

2N ≥  (i.e. that (50) holds with 1aX P= , and 2aY P=  or 
( ) 21 aY N P= − ) and, thus, 

 { }
{ }

( ){ }
{ }

1 21 2

1 1

Pr 1Pr
lim lim 1

Pr Pr
a aa a
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P N P xP P x
P x P x→∞ →∞

+ − >+ >
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> >
 

  (52) 
Combining this with the following bounds, 
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1 2

1 2

Pr Pr

Pr 1

a a aii
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and noting that N  is finite with probability 1, one obtains 
(13). While (53) formally does not hold when 0 or 1N = , 
there is nothing to prove in such cases as the maximum and 
total interference powers coincide. Q.E.D. 

As a side remark, we note that Theorem 1 holds for a 
broad class of scenarios where the distribution of interfering 
signal powers can be represented via the functions of regular 
variations, and not only for the scenario we consider here. In 

particular, this includes signals subject to Rayleigh and log-
normal fading. 

XI. APPENDIX 2 
Proof of (31): Consider the outage probability in (30) 
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where 0 1< ε < , and note (using (16)) that, when D →∞ , 
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On the other hand,  
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and, thus, 2I  can be neglected and (31) follows. Q.E.D. 
Not only this proof gives a compact approximation for the 

outage probability, but also tells us why this approximation 
holds: since the tail of the fading distribution decays much 
faster than that of 1aP  (compare (55) to (56)), the dominant 
contribution to outage events is coming from the nearest 
interferer that is not in outage due to fading. 

It is clear that the same argument also holds when ( 1)k −  
nearest interferers are cancelled, when the fading is log-
normal or combined (log-normal+Rayleigh), or when the 
fading process is from the broad class in (38) (the latter three 
require for slight modification of the upper bound in (56), 
which is left as an exercise to the reader). 
 


